
2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 1/8

Git or SVN? How Nuance
Healthcare chose a Git

branching model?
 Matt Shelton

This is a guest post from Matt Shelton at Nuance Healthcare. This is
the first post in a series about his team moving from Subversion to
Git, why they did it, and what we encountered along the way. Matt is
also speaking on this topic at Atlassian Summit 2015. This series will
feature everything he couldn’t say in his 30 minute talk, with more
context.

Background
My team is in the healthcare division at Nuance. We're
geographically-distributed between a couple of offices and homes on
the East Cast of the US, and in an office in Pune. We develop Java web
services to deliver NLP[1] solutions to the healthcare market.

BACK TO LIST

https://summit.atlassian.com/
http://www.nuancehealthcare.com/
https://www.atlassian.com/git/articles


2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 2/8

For the most part, our service consumers are other healthcare
software companies (including ourselves) such as EHR vendors and
healthcare analytics companies. We do directly sell some products to
hospitals, and the end-users of the applications range from physicians
to medical billing staff. "Normal" people like you and me don't ever
touch the software my team builds.

Our team has been around the block a few times with Application
Lifecycle Management product combinations. We started life with a
mix of Rally Enterprise and Seapine TestTrack Pro, did about 14
months of hard labor with Rational Team Concert, and eventually
migrated fully to the Atlassian stack
(Jira, Confluence, Bamboo, Crucible, Bitbucket and Hipchat).
Historically we used Subversion 1.4/1.5 an our SCM with a quasi-
normal trunk/branches/tags structure. We have been
using maven since forever manage our build projects and
dependencies, and switched from Jenkins to Bamboo for continuous
integration (CI) a while ago in order to make use of tighter
integrations with Jira and its flexible build and deploy agent
capabilities. Everything we use (now) is behind the firewall for
reasons[2].

Git or SVN?
We support roughly ten individual products across four product
families, and the owners of these products are always battling for
prioritization and timing. It’s nice to have our work be in high
demand, and this is by no means a complaint, but it also necessitates
cutting releases at a weird cadence and needing to change directions
in the middle of a sprint[3].

Our development process really felt prohibitive at times. There was a
conversation that my team was having on a regular basis that went

BACK TO LIST

https://www.atlassian.com/
https://www.atlassian.com/software/jira/
https://www.atlassian.com/software/confluence/
https://www.atlassian.com/software/bamboo/
https://www.atlassian.com/software/crucible/overview
http://bitbucket.org/
https://www.hipchat.com/
https://maven.apache.org/
https://www.atlassian.com/git/articles


2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 3/8

something like this:

Me: We need to release 1.8.0 to QA now for regression
testing so that Customer foo can go to beta next
week. Dev: I'm still working on ABC-123 which is in trunk.
It's not done yet. Me: Foo doesn't need ABC-123. We could
put it in the next release. Dev: But I've been working on it
for weeks. There's no clear spot to branch from to cut a
release. Me: Well, you'll need to pull out all of your changes
by hand. You have about two hours or QA can't finish in
time.

I know, I sound like a jerk! I never meant to be, and of course I'm
exaggerating a bit to make a point, but we really did have to figure
out how to get code that was in one place out of that place
temporarily so that we could cut a release, and then put it right
backfor the next release[4]. And this happened all the time.

Now, I know some of you are thinking "Subversion supports
branches, Matt...". It absolutely does, and we used them on occasion
with SVN 1.4 and 1.5. Branching is a fine operation in
SVN; mergingcan be a pain in the ass. As SVN has matured, it has
gotten better, for sure. But we knew there were better options out
there for us, so when the question of SCN or git arose, we set out to
get Git.

A side note: We briefly looked at the latest SVN (1.8 at the
time) to see if it was strong enough to solve our problems,
but weren't completely satisfied. One of our peer groups
has a large Perforce setup and it had a lot of what we
needed, but I simply couldn't stomach the licensing costs.
We also looked at Mercurial for a moment, but in the end,
the existing team's exposure to Git was enough to tell us
that it was the right direction.

BACK TO LIST

https://www.atlassian.com/git/articles


2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 4/8

I won't sugar-coat this: Atlassian's tools really favor teams who use
git. Other SCMs work fine; our SVN integration was sufficient in that it
linked us to where a given user story's changes were made. The
integration capabilities for teams who use Bitbucket Server[5] instead,
however, are both stronger and more natural-feeling in the Jira
Software interface and development experience - ditto with Bamboo.

Knowing this, and having seen some very stellar demos at Summit
2013, I strongly encouraged the team to go for it. Nobody objected,
and we already had the licenses in place to make change.

Choosing a Git Branching
Model
After deciding to make this change, the first challenge we had was
deciding what Git branching model to implement for our team.
Atlassian's Git microsite as well as this great presentation from
Summit 2013 explain in greater detail what a branching model is. The
short version is that it describes how you will use branches in git to
power your development workflow.

In SVN, we had a model for branching I'll call "make one when you
realize you - OMG! - need one":

The newest code is in trunk. Releases from trunk will be numbered 
A.B.0-{build}.
If a fix is required to a trunk-based release (e.g. we have a bug in 1.2.0-
64), a branch is created and from there we will release A.B.C-{build}
releases, where C increments after every release that goes out the door.
These branches may never exist for a given A.B and we could even have
more than one.
We also tag every release in a tags directory.

BACK TO LIST

https://bitbucket.org/product/server
https://www.atlassian.com/software/jira/
https://summit.atlassian.com/archives/2013/general-sessions/dev-tools-state-of-the-union-
https://www.atlassian.com/git/
https://summit.atlassian.com/archives/2013/inside-the-development-team/git-workflows-a-la-carte
https://www.atlassian.com/git/articles


2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 5/8

An Aside About Versions Many years ago, when I was just
cutting my teeth on managing a development team, our
release engineer had a system of versioning that was... how
shall I say?... really unintuitive. Essentially, every release was
a patch on the previous one (A.B.n), with no respect for the
place from which the patch originated. Figuring out where
something came from and, in almost all cases, the release
order, required you to look at svn log. We printed the tree
on a wall for reference. In addition, our public-facing
release numbers tend to be things like 3.0, 3.1, 3.5, 4.0, or
essentially something a customer might expect. Remember,
though that my team builds web services not a boxed
product. Our APIs are a contract. A few years ago I made
the executive that my team's builds, and therefore its
releases, would adhere to Semantic Versioning rules. I've'
had to stand my ground a few times with upper
management, but now it is understood why the rules are
what they are, and we haven't looked back. Partners
appreciate that sort of clarity.

I mentioned a problem earlier wherein we'd be working on a release
(let's say 1.2.0) and we'd have a feature still in progress as we
approached a release date. We would need to pull that code out, cut
our release, branch to branches/1.2.1 and then merge that code back
in, hoping nobody had a hard drive crash in the meantime[6].

Removing a whole feature by itself from a shared trunk is a pain.
Everyone hated life when they had to do that. svn blame can be
useful, as can a strong diff tool, but it’s still annoying to work with. I
often took it personally, feeling that my bad planning had led to us
not having all of our ducks in a row before it was time to be done
with a release[7]. My team dealt with this for long enough.

Sometimes we'd over-correct to avoid the pain and would ask
developers to sit on their hands for a couple of days (a virtual code

BACK TO LIST

http://semver.org/
https://www.atlassian.com/git/articles


2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 6/8

freeze, if you will), just so we didn't pollute trunk before a release.

So we knew we needed, at least, feature branches. There's a simple
Git branching model that is applicable: a master branch for what's in
prod, and using feature branches for every feature, bug, etc. Team's
have to manage merge order to ensure that what ships out in master
is what is supposed to ship out for the release. This is, essentially, the
same thing we had before, with some better feature isolation, but we
wanted freedom with our power.

In our environment, we often need to keep a few versions in
production, and may need to fix defects in a release that is 2-3 minor
revisions older than what we are working on right now. So, in addition
to feature branches, we also needed some sort of release branch or
similar that would let us fix issues from previous releases. The
Atlassian Bitbucket Server team does this. They make fixes in long-
running support branches, and then merge them up the branch
stream so that a fix makes it in to all of the support streams.

Their model looked really good, and we ran a few prototype
interactions with this model to see if it would suit our needs. The
"killer app" for them is their rolling merge of a fix up to their develop
branch. While we liked this concept, every time we tried it, we ran into
one issue or another with our maven dependencies. Also, as a rule,
we couldn't guarantee we wanted a straight merge of the work from
one version into another. In some cases we needed to implement the
same fix in slightly different ways between versions, so a direct merge
wasn't possible.

A few of the members of the team strongly favored a variation of this
model known as "git-flow". Git-flow is a set of branch naming
conventions and merge guidelines, authored by Vincent Driessen.
This felt very natural to the team, and we liked the structure since it
eliminated many of the questions around "what do I do when we
need to do x?". The answers were generally very obvious. Rather than

BACK TO LIST

http://blogs.atlassian.com/2013/10/inside-atlassian-feature-branching-on-the-stash-team/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/
https://www.atlassian.com/git/articles


2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 7/8

explaining what git-flow is, you can read more about it in Atlassian's
tutorial.

The only gap left for us with git-flow was what to do about those
long-running releases in production. Since master keeps moving
forward, we couldn't use the git-flow hotfix workflow for a bug fix
from a previous release. On the other hand, we didn't always want a
support branch.

Most of the time a hotfix, only patching the latest release in
production, should be sufficient; support is only there when we need
to go back further, or when we need to maintain compatibility for one
reason or another. That latter use case we dissected further and came
up with criteria for choosing to use a support branch rather than a
hotfix and minor version upgrade:

1. This code cannot be trivially merged back into develop.
2. The partner/customer cannot handle an interface change that comes

with the latest release.
3. There is an internal dependency which cannot be changed.[8]

Both git-flow extension packages[9] provide support for the support
branch concept, which isn't part of the original draft of git-flow, but
has become popular enough to warrant inclusion.

Git-flow offered a workflow we liked, with the tooling support we
needed. In the next post I'll go into what happened when we actually
tried using it in a POC project we used to represent our development
process. It was... a learning experience!

[1]: Natural Language Processing. WE CAN READ YOUR THOUGHTS.
(No. Not really.)

[2]: There is a lot that is attractive about Atlassian's cloud offerings,
but we need to keep our fingers wrapped tightly around our servers
and data for the time being. While we don't personally need to do

BACK TO LIST

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/articles


2/2/2020 Git or SVN? How Nuance Healthcare chose a Git branching model?

https://www.atlassian.com/git/articles/git-or-svn-git-branching-model 8/8

much with PHI data, our software does and it's important to keep it as
secure as possible.

[3]: Shhhh... don't tell Ken Schwaber.

[4]: Which might have only been a few days later anyway.

[5]: Formerly known as Stash. Hello, Atlassian Fall Rebranding!

[6]: I know we could always pull it out of the previous commit. I was
kidding.

[7]: This wasn't usually the case - generally it was because someone
else's timeframe moved up and we had to react quickly.

[8]: This is one of those things I can't get into on my own blog. Just
trust me. "Reasons".

[9]: The original package by Vincent Driessen isn't being maintained
any longer. A new fork , however, is regularly updated.

BACK TO LIST

https://github.com/nvie/gitflow
https://github.com/petervanderdoes/gitflow-avh
https://www.atlassian.com/git/articles

