
1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 1/17

Unlimited asset downloads! From $16.50/m

d e t se e t

CODE > PHP

Everything You Need to Get Started With
CodeIgniter
by Ben Haines 26 Jan 2009

Di�culty: Beginner Length: Long Languages: English

PHP Web Development CodeIgniter

CodeIgniter is a web application framework for PHP. It enables developers to build web
applications faster, and it offers many helpful code libraries and helpers which speed up
tedious tasks in PHP. CodeIgniter is based on a modular design; meaning that you can
implement speci�c libraries at your discretion - which adds to the speed of the framework.
This tutorial will attempt to show you the basics of setting up the framework, including
how to build a basic hello world application that uses the MVC approach.

Why a Framework?

https://elements.envato.com/pricing?utm_source=tutsplus.com&utm_medium=promos&utm_campaign=elements_tuts-header_dec2019
javascript:
https://tutsplus.com/
https://code.tutsplus.com/tutorials
https://code.tutsplus.com/categories/php
https://tutsplus.com/authors/ben-haines
https://code.tutsplus.com/categories/php
https://code.tutsplus.com/categories/web-development
https://code.tutsplus.com/categories/codeigniter
javascript:
javascript:

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 2/17

Frameworks allow for structure in developing applications by providing reusable classes
and functions which can reduce development time signi�cantly. Some downsides to
frameworks are that they provide unwanted classes, adding code bloat which makes the
app harder to navigate.

Why CodeIgniter?

CodeIgniter is a very light, well performing framework. While, it is perfect for a beginner
(because
of the small learning curve), it's also perfect for large and demanding web applications.
CodeIgniter is developed by EllisLab and has thorough, easy to understand
documentation. Below is a list of reasons of what makes CodeIgniter a smart framework
to use?

Small footprint with exceptional performance
MVC approach to development (although it is very loosely based which allows for
�exibility)
Generates search engine friendly clean URLs
Easily extensible

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 3/17

Runs on both PHP 4 (4.3.2+) and 5
Support for most major databases including MySQL (4.1+), MySQLi, MS SQL,
Postgres, Oracle, SQLite,
and ODBC.
Application security is a focus
Easy caching operations
Many libraries and helpers to help you with complex operations such as email, image
manipulation,
form validation, �le uploading, sessions, multilingual apps and creating apis for your
app
Most libraries are only loaded when needed which cuts back on resources needed

Advertisement

Why MVC?

For starters, MVC stands for Model, View, Controller. It is a programing pattern used in
developing
web apps. This pattern isolates the user interface and backend (i.e. database interaction
from each other. A successful
implementation of this lets developers modify their user interface or backend with out

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 4/17

affecting
the other. MVC also increases the �exibly of an app by being able to resuse models or
views over
again). Below is a description of MVC.

Model: The model deals with the raw data and database interaction and will contain
functions
like adding records to a database or selecting speci�c database records. In CI the
model
component is not required and can be included in the controller.
View: The view deals with displaying the data and interface controls to the user with.
In CI the view could be a web page, rss feed, ajax data or any other "page".
Controller: The controller acts as the in between of view and model and, as the name
suggests,
it controls what is sent to the view from the model. In CI, the controller is also the
place to load libraries and helpers.

An example of a MVC approach would be for a contact form.

1. The user interacts with the view by �lling in a form and submitting it.
2. The controller receives the POST data from the form, the controller sends this data to

the model
which updates in the database.

3. The model then sends the result of the database to the controller.
4. This result is updated in the view and displayed to the user.

This may sound like alot of work to do. But, trust me; when you're working with a large
application, being able to reuse models or views saves a great deal of time.

Step 1: Downloading CodeIgniter

Too start off you will need to download CodeIgniter and upload it to your server. Point your
browser

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 5/17

to http://www.codeigniter.com/ and
click the large download button. For this tutorial we are using version 1.70.

Step 2: Installing and Exploring CodeIgniter

Once you have downloaded CodeIgniter, all you need to do is unzip it, and rename the
"CodeIgniter_1.7.0" folder to
either the application name or, in this case, "ci" and upload it to your PHP and MySQL
enabled server.
Now that its on your server, I'll explain what all the folders and �les are for:

The system folder stores all the �les which make CI work.
The application folder is almost identical to the contents of the system folder
this is so the user can have �les that are particular to that application, for
example if a
user only wanted to load a helper in one application he would place it in the

http://www.codeigniter.com/

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 6/17

system/application/helpers folder
instead of the system/helpers folder.

The con�g folder stores all the con�g �les relevant to the application.
Which
includes information on what libaries the application should auto load and
database details.
The controllers folder stores all the controllers for the application.
The errors folder stores all the template error pages for the application.
When
an error occurs the error page is generated from one of these templates.
The helpers folder stores all the helpers which are speci�c to your
application.
The hooks folder is for hooks which modify the functioning of CI's core
�les,
hooks should only be used by advanced users of CI
The language folder stores lines of text which can be loaded through the
language
library to create multilingual sites.
The libraries folder stores all the libraries which are speci�c to your
application.
The models folder stores all the models for the application.
The views folder stores all the views for the application.

The cache folder stores all the caches generated by the caching library.
The codeigniter folder stores all the internals which make CI work.
The database folder stores all the database drivers and class which enable you
to
connect to database.
The fonts folder stores all the fonts which can be used by the image
manipulation library.
The helpers folder stores all of CI's core helpers but you can place your own
helpers
in here which can be accessed by all of your applications.
The language folder stores all of CI's core language �les which its libaries and
helpers

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 7/17

use. You can also put your own language folders which can accessed by all of
your applications.
The libaries folder stores all of CI's core libaries but you can place your own
libraries
in here which can be accessed by all of your applications
The logs folder stores all of the logs generated by CI.
The plugin folder stores all of the plugins which you can use. Plugins are almost
identical
to helpers, plugins are functions intended to be shared by the community.
The scaffolding folder stores all the �les which make the scaffolding class
work.
Scaffolding provides a convenient CRUD like interface to access information in
your database
during development.

The user_guide houses the user guide to CI.
The index.php �le is the bit that does all the CI magic it also lets the you change the
name of the system and application folders.

Advertisement

Step 3: Con�guring CodeIgniter

Getting CI up and running is rather simple. Most of it requires you to edit a few
con�guration
�les.

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 8/17

You need to setup CI to point to the right base URL of the app. To do this, open up
system/application/con�g/con�g.php and
edit the base_url array item to point to your server and CI folder.

Step 4: Testing CodeIgniter

We'll do a quick test to see if CI is up and running properly. Go to http://localhost/ci/ and
you
should see the following.

Step 5: Con�guring CodeIgniter Cont.

1 $config['base_url'] = "http://localhost/ci/";

http://localhost/ci/

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 9/17

If you're up and running, we should �nish the con�guration. We are starting to con�gure it
speci�cally for our new helloworld app. If you want to use a database with your
application, (which in this tutorial we do.) open up
system/application/con�g/database.php and set the following array items to there
corresponding values. This code connects to a MySQL
database called "helloworld" on a localhost with the username "root", and the password,
"root".

Additionally, since we will be using the database quite a bit, we want it to auto load so that
we don't
have to speci�cally load it each time we connect. Open the
system/application/con�g/autoload.php �le
and add 'database' to the autoload libaries array.

Currently, the CI setup will have a default controller called "welcome.php"; you can �nd this
in the system/application/controllers folder. For this tutorial, delete it and open your
system/application/con�g/routes.php �le. Change the default array item to point to the
"helloworld" controller.

CI also has a view �le that we do not need. Open up the system/application/view/ folder
and delete the welcome_message.php �le.

Step 6: Create the Helloworld Database

1
2
3
4
5

$db['default']['hostname'] = "localhost";
$db['default']['username'] = "root";
$db['default']['password'] = "root";
$db['default']['database'] = "helloworld";
$db['default']['dbdriver'] = "mysql";

1 $autoload['libraries'] = array('database');

1 $route['default_controller'] = "Helloworld"

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 10/17

As this isn't really a tutorial on MySQL, I'll keep this section as short as possible. Create a
database called "helloworld" and
run the following SQL through phpMyAdmin (or similar MySQL client).

Step 7: Create the Helloworld Model

Models are optional in CI, but it's considered best practice to use them. They are just PHP
classes that contain
functions which work with information from the database. Go
ahead and make a helloworld_model.php �le
in the system/application/models folder.
In this �le, create a Helloworld_model class, Helloworld_model construct and a function
called getData.

In the getData function we are
going to use Active Record database functions which speed up database development
times when working
with CI and databases. Essentially, they are simpli�ed functions to create queries.

01
02
03
04
05
06
07
08
09
10
11
12

CREATE TABLE `data` (
 `id` int(11) NOT NULL auto_increment,
 `title` varchar(255) NOT NULL,
 `text` text NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=2 ;

INSERT INTO `data` (`id`, `title`, `text`) VALUES(1, 'Hello World!', 'Lorem ipsum dolor
sapien eros, lacinia eu, consectetur vel, dignissim et, massa. Praesent suscipit nunc v
nec libero. Phasellus lobortis, velit sed pharetra imperdiet, justo ipsum facilisis arc
Pellentesque molestie dui lacinia nulla. Sed vitae arcu at nisl sodales ultricies. Etia
vulputate in, augue. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices p

01
02
03
04
05
06
07
08

<?php
class Helloworld_model extends Model {

 function Helloworld_model()
 {
 // Call the Model constructor
 parent::Model();
 }

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 11/17

Step 8: Create the Helloworld Controller

Let's create a controller that will display the view, and load the model. That way, when
you go to the address http://localhost/ci/index.php/helloworld/, you will see the data from
the database.
In the folder system/application/controllers, create a �le called helloworld.php.
In this new �le, we'll create a class which has the same name as the �le.

Within this class, you need to create a function called "index". This is the function that will
be
displayed when no other is provided - e.g. when http://localhost/ci/index.php/helloworld/
is
visited. If, for example, we created a function called foo, we could �nd this as
http://localhost/ci/index.php/helloworld/foo/.

The key thing to remember is how CI structures its URLs; e.g
http://host/codeignitordirectory/index.php/class/function.

In the controller index function, we need to load the model, query the database, and pass
this queried
data to the view. To load any resources into CI e.g. libraries,
helpers, views, or, models, we use the load class. After we have loaded the model, we can
access it through

09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 function getData()
 {
 //Query the data table for every record and row
 $query = $this->db->get('data');

 if ($query->num_rows() > 0)
 {
 //show_error('Database is empty!');
 }else{
 return $query->result();
 }
 }

}
?>

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 12/17

its model name and the particular function. To pass data to a view we need to assign it to
an array
item and pass the array - which recreates the array items as a variable in the view �le.

If we visited http://localhost/ci/index.php/helloworld/ now, it wouldn't work; this is
because the view �le does not exist.

01
02
03
04
05
06
07
08
09
10
11
12
13

<?php
 class Helloworld extends Controller{
 function index()
 {
 $this->load->model('helloworld_model');

 $data['result'] = $this->helloworld_model->getData
 $data['page_title'] = "CI Hello World App!";

 $this->load->view('helloworld_view',$data);
 }
 }
?>

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 13/17

Step 9: Create the Helloworld View

The view �le is what the user sees and interacts with, it could be a segment of a page, or
the whole page. You can pass an array of variables to the view through the second
argument
of the load model function. To make the view for our tutorial, create a new �le called
helloworld_view.php in the system/application/view folder. Next, we just need to create
our normal html, head
and body elements, and then a header and paragraph for the information from the
database. To display all
the records received from the database, we put it in a "foreach" loop
which loops through all the elements.

You may have noticed that we are using php alternative syntax, this provides an
convenient and time
saving way to write echo statements.

Step 10: Ta-da and Some Extras

When you visit "http://localhost/ci/index.php/helloworld/", you
should see something similar to this.

01
02
03
04
05
06
07
08
09
10
11
12

<html>
 <head>
 <title><?=$page_title?></title>
 </head>
 <body>
 <?php foreach($result as $row):?>
 <h3><?=$row->title?></h3>
 <p><?=$row->text?></p>

 <?php endforeach;?>
 </body>
</html>

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 14/17

But we aren't done yet. There are a few things you can do to improve your CodeIgniter
experience -
like removing that annoying index.php bit out of the URL. You can accomplish this task by
creating a .htaccess �le in the root folder, and adding the following code.

RewriteEngine on
RewriteCond $1 !^(index\.php|images|robots\.txt)
RewriteRule ^(.*)$ ci/index.php/$1 [L]

You'll also need to open up the con�g.php �le in system/application/con�g/ and edit the
index_page array item to a blank string.

Another nifty trick is to turn on CI's ability to parse PHP alternative syntax if its
not enabled by the server. To do this, open up the same �le as before,
system/application/con�g/con�g.php, and set the rewrite_short_tags array item to TRUE.

1 $config['index_page'] = "";

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 15/17

I hope all goes well! Look forward to seeing more CodeIgniter tutorials from me in the
future.

Subscribe to the NETTUTS RSS Feed for more daily web development tuts and articles.

Advertisement

Ben Haines

Hi, I'm Ben. I'm a developer/designer from a lil' country at the bottom of the world
called New Zealand. My poisons of choice are PHP and CodeIgniter, JS and
Mootools, CSS, and (X)HTML

FEED LIKE FOLLOW

1 $config['rewrite_short_tags'] = TRUE;

http://feeds.feedburner.com/nettuts
https://tutsplus.com/authors/ben-haines
https://code.tutsplus.com/categories/php.atom
https://www.facebook.com/tutsplus
http://twitter.com/TutsPlusCode

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 16/17

Weekly email summary

Subscribe below and we’ll send you a weekly email summary of all new Code tutorials. Never miss out on
learning about the next big thing.

Email Address

Update me weekly

Translations

Envato Tuts+ tutorials are translated into other languages by our community members—you can be involved too!

Translate this post

Powered by

Native

Advertisement

https://getnative.me/?ref=tutsplus&lang=en&url=https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634&title=Everything%20You%20Need%20to%20Get%20Started%20With%20CodeIgniter&splitMode=1

1/31/2020 Everything You Need to Get Started With CodeIgniter

https://code.tutsplus.com/tutorials/everything-you-need-to-get-started-with-codeigniter--net-2634 17/17

QUICK LINKS - Explore popular categories

ENVATO TUTS+

JOIN OUR COMMUNITY

HELP

envato-tuts+

28,561
Tutorials

1,274
Courses

40,253
Translations

Follow Envato Tuts+
FacebookTwitter Pinterest

Envato.com Our products Careers Sitemap

© 2020 Envato Pty Ltd. Trademarks and brands are the property of their respective owners.

javascript:void(0);
javascript:void(0);
javascript:void(0);
https://www.facebook.com/tutsplus
https://twitter.com/tutsplus
https://www.pinterest.com/tutsplus/
https://envato.com/
https://envato.com/#products
https://envato.com/careers
https://envato.com/sitemap

