
AUGUST 9, 2000 by JOEL SPOLSKY

The Joel Test: 12 Steps to Better
Code

Have you ever heard of SEMA? It’s a fairly esoteric system for measuring how
good a so�ware team is. No, wait! Don’t follow that link! It will take you about six
years just to understand that stu�. So I’ve come up with my own, highly
irresponsible, sloppy test to rate the quality of a so�ware team. The great part
about it is that it takes about 3 minutes. With all the time you save, you can go to
medical school.

The Joel Test

1. Do you use source control?

2. Can you make a build in one step?

3. Do you make daily builds?

4. Do you have a bug database?

5. Do you fix bugs before writing new code?

TOP 10, ROCK STAR DEVELOPER, NEWS�

I’m Joel Spolsky, a so�ware developer in New York City. More
about me.

JOEL ON SOFTWARE

https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://www.joelonsoftware.com/author/joelonsoftware/
http://www.sei.cmu.edu/sema/welcome.html
https://www.joelonsoftware.com/category/reading-lists/top-10/
https://www.joelonsoftware.com/category/reading-lists/rock-star-developer/
https://www.joelonsoftware.com/category/news/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/

y g g

6. Do you have an up-to-date schedule?

7. Do you have a spec?

8. Do programmers have quiet working conditions?

9. Do you use the best tools money can buy?

10. Do you have testers?

11. Do new candidates write code during their
interview?

12. Do you do hallway usability testing?

The neat thing about The Joel Test is that it’s easy to get a quick yes or no to
each question. You don’t have to figure out lines-of-code-per-day or average-
bugs-per-inflection-point. Give your team 1 point for each “yes” answer. The
bummer about The Joel Test is that you really shouldn’t use it to make sure that
your nuclear power plant so�ware is safe.

A score of 12 is perfect, 11 is tolerable, but 10 or lower and you’ve got serious
problems. The truth is that most so�ware organizations are running with a score
of 2 or 3, and they need serious help, because companies like Microso� run at 12
full-time.

Of course, these are not the only factors that determine success or failure: in
particular, if you have a great so�ware team working on a product that nobody
wants, well, people aren’t going to want it. And it’s possible to imagine a team of
“gunslingers” that doesn’t do any of this stu� that still manages to produce
incredible so�ware that changes the world. But, all else being equal, if you get
these 12 things right, you’ll have a disciplined team that can consistently deliver.

1. Do you use source control?
I’ve used commercial source control packages, and I’ve used CVS, which is free,
and let me tell you, CVS is fine. But if you don’t have source control, you’re going
to stress out trying to get programmers to work together. Programmers have no
way to know what other people did. Mistakes can’t be rolled back easily. The
other neat thing about source control systems is that the source code itself is
checked out on every programmer’s hard drive — I’ve never heard of a project
using source control that lost a lot of code

http://www.cvshome.org/

using source control that lost a lot of code.

2. Can you make a build in one step?
By this I mean: how many steps does it take to make a shipping build from the
latest source snapshot? On good teams, there’s a single script you can run that
does a full checkout from scratch, rebuilds every line of code, makes the EXEs, in
all their various versions, languages, and #ifdef combinations, creates the
installation package, and creates the final media — CDROM layout, download
website, whatever.

If the process takes any more than one step, it is prone to errors. And when you
get closer to shipping, you want to have a very fast cycle of fixing the “last” bug,
making the final EXEs, etc. If it takes 20 steps to compile the code, run the
installation builder, etc., you’re going to go crazy and you’re going to make silly
mistakes.

For this very reason, the last company I worked at switched from WISE to
InstallShield: we required that the installation process be able to run, from a
script, automatically, overnight, using the NT scheduler, and WISE couldn’t run
from the scheduler overnight, so we threw it out. (The kind folks at WISE assure
me that their latest version does support nightly builds.)

3. Do you make daily builds?
When you’re using source control, sometimes one programmer accidentally
checks in something that breaks the build. For example, they’ve added a new
source file, and everything compiles fine on their machine, but they forgot to
add the source file to the code repository. So they lock their machine and go
home, oblivious and happy. But nobody else can work, so they have to go home
too, unhappy.

Breaking the build is so bad (and so common) that it helps to make daily builds,
to insure that no breakage goes unnoticed. On large teams, one good way to
insure that breakages are fixed right away is to do the daily build every
a�ernoon at, say, lunchtime. Everyone does as many checkins as possible
before lunch. When they come back, the build is done. If it worked, great!
Everybody checks out the latest version of the source and goes on working. If
the build failed, you fix it, but everybody can keep on working with the pre-
build, unbroken version of the source.

http://www.cvshome.org/

On the Excel team we had a rule that whoever broke the build, as their
“punishment”, was responsible for babysitting the builds until someone else
broke it. This was a good incentive not to break the build, and a good way to
rotate everyone through the build process so that everyone learned how it
worked.

Read more about daily builds in my article Daily Builds are Your Friend.

4. Do you have a bug database?
I don’t care what you say. If you are developing code, even on a team of one,
without an organized database listing all known bugs in the code, you are going
to ship low quality code. Lots of programmers think they can hold the bug list in
their heads. Nonsense. I can’t remember more than two or three bugs at a time,
and the next morning, or in the rush of shipping, they are forgotten. You
absolutely have to keep track of bugs formally.

Bug databases can be complicated or simple. A minimal useful bug database
must include the following data for every bug:

complete steps to reproduce the bug

expected behavior

observed (buggy) behavior

who it’s assigned to

whether it has been fixed or not

If the complexity of bug tracking so�ware is the only thing stopping you from
tracking your bugs, just make a simple 5 column table with these crucial fields
and start using it.

For more on bug tracking, read Painless Bug Tracking.

5. Do you fix bugs before writing new code?
The very first version of Microso� Word for Windows was considered a “death
march” project. It took forever. It kept slipping. The whole team was working
ridiculous hours, the project was delayed again, and again, and again, and the
stress was incredible. When the dang thing finally shipped, years late, Microso�

https://www.joelonsoftware.com/articles/fog0000000023.html
https://www.joelonsoftware.com/articles/fog0000000029.html

sent the whole team o� to Cancun for a vacation, then sat down for some
serious soul-searching.

What they realized was that the project managers had been so insistent on
keeping to the “schedule” that programmers simply rushed through the coding
process, writing extremely bad code, because the bug fixing phase was not a
part of the formal schedule. There was no attempt to keep the bug-count down.
Quite the opposite. The story goes that one programmer, who had to write the
code to calculate the height of a line of text, simply wrote “return 12;” and
waited for the bug report to come in about how his function is not always
correct. The schedule was merely a checklist of features waiting to be turned
into bugs. In the post-mortem, this was referred to as “infinite defects
methodology”.

To correct the problem, Microso� universally adopted something called a “zero
defects methodology”. Many of the programmers in the company giggled, since
it sounded like management thought they could reduce the bug count by
executive fiat. Actually, “zero defects” meant that at any given time, the highest
priority is to eliminate bugs before writing any new code. Here’s why.

In general, the longer you wait before fixing a bug, the costlier (in time and
money) it is to fix.

For example, when you make a typo or syntax error that the compiler catches,
fixing it is basically trivial.

When you have a bug in your code that you see the first time you try to run it,
you will be able to fix it in no time at all, because all the code is still fresh in your
mind.

If you find a bug in some code that you wrote a few days ago, it will take you a
while to hunt it down, but when you reread the code you wrote, you’ll
remember everything and you’ll be able to fix the bug in a reasonable amount of
time.

But if you find a bug in code that you wrote a few months ago, you’ll probably
have forgotten a lot of things about that code, and it’s much harder to fix. By
that time you may be fixing somebody else’s code, and they may be in Aruba on
vacation, in which case, fixing the bug is like science: you have to be slow,

acat o , c case, g t e bug s l e sc e ce: you a e to be slo ,
methodical, and meticulous, and you can’t be sure how long it will take to
discover the cure.

And if you find a bug in code that has already shipped, you’re going to incur
incredible expense getting it fixed.

That’s one reason to fix bugs right away: because it takes less time. There’s
another reason, which relates to the fact that it’s easier to predict how long it
will take to write new code than to fix an existing bug. For example, if I asked
you to predict how long it would take to write the code to sort a list, you could
give me a pretty good estimate. But if I asked you how to predict how long it
would take to fix that bug where your code doesn’t work if Internet Explorer 5.5
is installed, you can’t even guess, because you don’t know (by definition) what’s
causing the bug. It could take 3 days to track it down, or it could take 2 minutes.

What this means is that if you have a schedule with a lot of bugs remaining to be
fixed, the schedule is unreliable. But if you’ve fixed all the known bugs, and all
that’s le� is new code, then your schedule will be stunningly more accurate.

Another great thing about keeping the bug count at zero is that you can respond
much faster to competition. Some programmers think of this as keeping the
product ready to ship at all times. Then if your competitor introduces a killer
new feature that is stealing your customers, you can implement just that feature
and ship on the spot, without having to fix a large number of accumulated bugs.

6. Do you have an up-to-date schedule?
Which brings us to schedules. If your code is at all important to the business,
there are lots of reasons why it’s important to the business to know when the
code is going to be done. Programmers are notoriously crabby about making
schedules. “It will be done when it’s done!” they scream at the business people.

Unfortunately, that just doesn’t cut it. There are too many planning decisions
that the business needs to make well in advance of shipping the code: demos,
trade shows, advertising, etc. And the only way to do this is to have a schedule,
and to keep it up to date.

The other crucial thing about having a schedule is that it forces you to decide
what features you are going to do, and then it forces you to pick the least
i t t f t d t th th th li i i t f t iti (k

http://www.netmeg.net/jargon/terms/c/creeping_featuritis.html

important features and cut them rather than slipping into featuritis (a.k.a. scope
creep).

Keeping schedules does not have to be hard. Read my article Painless So�ware
Schedules, which describes a simple way to make great schedules.

7. Do you have a spec?
Writing specs is like flossing: everybody agrees that it’s a good thing, but
nobody does it.

I’m not sure why this is, but it’s probably because most programmers hate
writing documents. As a result, when teams consisting solely of programmers
attack a problem, they prefer to express their solution in code, rather than in
documents. They would much rather dive in and write code than produce a spec
first.

At the design stage, when you discover problems, you can fix them easily by
editing a few lines of text. Once the code is written, the cost of fixing problems is
dramatically higher, both emotionally (people hate to throw away code) and in
terms of time, so there’s resistance to actually fixing the problems. So�ware that
wasn’t built from a spec usually winds up badly designed and the schedule gets
out of control. This seems to have been the problem at Netscape, where the
first four versions grew into such a mess that management stupidly decided to
throw out the code and start over. And then they made this mistake all over
again with Mozilla, creating a monster that spun out of control and took several
years to get to alpha stage.

My pet theory is that this problem can be fixed by teaching programmers to be
less reluctant writers by sending them o� to take an intensive course in writing.
Another solution is to hire smart program managers who produce the written
spec. In either case, you should enforce the simple rule “no code without spec”.

Learn all about writing specs by reading my 4-part series.

8. Do programmers have quiet working conditions?
There are extensively documented productivity gains provided by giving
knowledge workers space, quiet, and privacy. The classic so�ware management
book Peopleware documents these productivity benefits extensively.

http://www.netmeg.net/jargon/terms/c/creeping_featuritis.html
https://www.joelonsoftware.com/articles/fog0000000245.html
https://www.joelonsoftware.com/articles/fog0000000069.html
http://www.yale.edu/engl450b/
https://www.joelonsoftware.com/articles/fog0000000036.html
http://www.amazon.com/exec/obidos/ASIN/0932633439/ref=nosim/joelonsoftware/

Here’s the trouble. We all know that knowledge workers work best by getting
into “flow”, also known as being “in the zone”, where they are fully concentrated
on their work and fully tuned out of their environment. They lose track of time
and produce great stu� through absolute concentration. This is when they get
all of their productive work done. Writers, programmers, scientists, and even
basketball players will tell you about being in the zone.

The trouble is, getting into “the zone” is not easy. When you try to measure it, it
looks like it takes an average of 15 minutes to start working at maximum
productivity. Sometimes, if you’re tired or have already done a lot of creative
work that day, you just can’t get into the zone and you spend the rest of your
work day fiddling around, reading the web, playing Tetris.

The other trouble is that it’s so easy to get knocked out of the zone. Noise,
phone calls, going out for lunch, having to drive 5 minutes to Starbucks for
co�ee, and interruptions by coworkers — especially interruptions by coworkers
— all knock you out of the zone. If a coworker asks you a question, causing a 1
minute interruption, but this knocks you out of the zone badly enough that it
takes you half an hour to get productive again, your overall productivity is in
serious trouble. If you’re in a noisy bullpen environment like the type that
ca�einated dotcoms love to create, with marketing guys screaming on the
phone next to programmers, your productivity will plunge as knowledge
workers get interrupted time a�er time and never get into the zone.

With programmers, it’s especially hard. Productivity depends on being able to
juggle a lot of little details in short term memory all at once. Any kind of
interruption can cause these details to come crashing down. When you resume
work, you can’t remember any of the details (like local variable names you were
using, or where you were up to in implementing that search algorithm) and you
have to keep looking these things up, which slows you down a lot until you get
back up to speed.

Here’s the simple algebra. Let’s say (as the evidence seems to suggest) that if we
interrupt a programmer, even for a minute, we’re really blowing away 15
minutes of productivity. For this example, lets put two programmers, Je� and
Mutt, in open cubicles next to each other in a standard Dilbert veal-fattening
farm. Mutt can’t remember the name of the Unicode version of the strcpy
function. He could look it up, which takes 30 seconds, or he could ask Je�, which

p, , ,
takes 15 seconds. Since he’s sitting right next to Je�, he asks Je�. Je� gets
distracted and loses 15 minutes of productivity (to save Mutt 15 seconds).

Now let’s move them into separate o�ices with walls and doors. Now when Mutt
can’t remember the name of that function, he could look it up, which still takes
30 seconds, or he could ask Je�, which now takes 45 seconds and involves
standing up (not an easy task given the average physical fitness of
programmers!). So he looks it up. So now Mutt loses 30 seconds of productivity,
but we save 15 minutes for Je�. Ahhh!

9. Do you use the best tools money can buy?
Writing code in a compiled language is one of the last things that still can’t be
done instantly on a garden variety home computer. If your compilation process
takes more than a few seconds, getting the latest and greatest computer is going
to save you time. If compiling takes even 15 seconds, programmers will get
bored while the compiler runs and switch over to reading The Onion, which will
suck them in and kill hours of productivity.

Debugging GUI code with a single monitor system is painful if not impossible. If
you’re writing GUI code, two monitors will make things much easier.

Most programmers eventually have to manipulate bitmaps for icons or toolbars,
and most programmers don’t have a good bitmap editor available. Trying to use
Microso� Paint to manipulate bitmaps is a joke, but that’s what most
programmers have to do.

At my last job, the system administrator kept sending me automated spam
complaining that I was using more than … get this … 220 megabytes of hard
drive space on the server. I pointed out that given the price of hard drives these
days, the cost of this space was significantly less than the cost of the toilet paper
I used. Spending even 10 minutes cleaning up my directory would be a fabulous
waste of productivity.

Top notch development teams don’t torture their programmers. Even minor
frustrations caused by using underpowered tools add up, making programmers
grumpy and unhappy. And a grumpy programmer is an unproductive
programmer.

To add to all this programmers are easily bribed by giving them the coolest

http://www.theonion.com/
https://www.joelonsoftware.com/articles/TwoStories.html

To add to all this… programmers are easily bribed by giving them the coolest,
latest stu�. This is a far cheaper way to get them to work for you than actually
paying competitive salaries!

10. Do you have testers?
If your team doesn’t have dedicated testers, at least one for every two or three
programmers, you are either shipping buggy products, or you’re wasting money
by having $100/hour programmers do work that can be done by $30/hour
testers. Skimping on testers is such an outrageous false economy that I’m simply
blown away that more people don’t recognize it.

Read Top Five (Wrong) Reasons You Don’t Have Testers, an article I wrote about
this subject.

11. Do new candidates write code during their interview?
Would you hire a magician without asking them to show you some magic tricks?
Of course not.

Would you hire a caterer for your wedding without tasting their food? I doubt it.
(Unless it’s Aunt Marge, and she would hate you forever if you didn’t let her
make her “famous” chopped liver cake).

Yet, every day, programmers are hired on the basis of an impressive resumé or
because the interviewer enjoyed chatting with them. Or they are asked trivia
questions (“what’s the di�erence between CreateDialog() and DialogBox()?”)
which could be answered by looking at the documentation. You don’t care if
they have memorized thousands of trivia about programming, you care if they
are able to produce code. Or, even worse, they are asked “AHA!” questions: the
kind of questions that seem easy when you know the answer, but if you don’t
know the answer, they are impossible.

Please, just stop doing this. Do whatever you want during interviews, but make
the candidate write some code. (For more advice, read my Guerrilla Guide to
Interviewing.)

12. Do you do hallway usability testing?
A hallway usability test is where you grab the next person that passes by in the
hallway and force them to try to use the code you just wrote. If you do this to
five people, you will learn 95% of what there is to learn about usability problems

https://www.joelonsoftware.com/articles/fog0000000067.html
https://www.joelonsoftware.com/articles/fog0000000073.html

← PREVIOUS POST

in your code.

Good user interface design is not as hard as you would think, and it’s crucial if
you want customers to love and buy your product. You can read my free online
book on UI design, a short primer for programmers.

But the most important thing about user interfaces is that if you show your
program to a handful of people, (in fact, five or six is enough) you will quickly
discover the biggest problems people are having. Read Jakob Nielsen’s article
explaining why. Even if your UI design skills are lacking, as long as you force
yourself to do hallway usability tests, which cost nothing, your UI will be much,
much better.

SUBSCRIBE!

You’re reading Joel on So�ware, stu�ed with years and years of completely raving mad articles
about so�ware development, managing so�ware teams, designing user interfaces, running
successful so�ware companies, and rubber duckies.

If you want to know when I publish something new, I recommend getting an RSS reader like
NewsBlur and subscribing to my RSS feed.

ABOUT THE AUTHOR.

In 2000 I co-founded Fog Creek So�ware, where we created
lots of cool things like the FogBugz bug tracker, Trello, and
Glitch. I also worked with Je� Atwood to create Stack Overflow
and served as CEO of Stack Overflow from 2010-2019. Today I
serve as the chairman of the board for Stack Overflow, Glitch,
and HASH.

https://www.joelonsoftware.com/2000/08/09/20000809/
https://www.joelonsoftware.com/uibook/chapters/fog0000000057.html
http://www.useit.com/alertbox/20000319.html
https://www.joelonsoftware.com/
https://newsblur.com/
https://www.joelonsoftware.com/feed/
https://stackoverflow.com/
https://glitch.com/
https://hash.ai/

PROUDLY POWERED BY WORDPRESS

← PREVIOUS POST

2000/08/09

NEXT POST →

2000/08/10

https://wordpress.org/
https://www.joelonsoftware.com/2000/08/09/20000809/
https://www.joelonsoftware.com/2000/08/10/20000810/

