
12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 1/8

OCTOBER 15, 2000 by JOEL SPOLSKY

Painless Functional Specifications
– Part 4: Tips

OK, we’ve talked about why you need a spec, what a spec has in it, and who
should write them. In this fourth and final part of the series I’ll share some of my
advice for writing good specs.

The biggest complaint you’ll hear from teams that do write specs is that
“nobody reads them.” When nobody reads specs, the people who write them
tend to get a little bit cynical. It’s like the old Dilbert cartoon in which engineers
use stacks of 4-inch thick specs to build extensions to their cubicles. At your
typical big, bureaucratic company, everybody spends months and months
writing boring specs. Once the spec is done, it goes up on the shelf, never to be
taken down again, and the product is implemented from scratch without any
regard to what the spec said, because nobody read the spec, because it was so
dang mind-numbing. The very process of writing the spec might have been a
good exercise, because it forced everyone, at least, to think over the issues. But
the fact that the spec was shelved (unread and unloved) when it was completed
makes people feel like it was all a bunch of work for naught.

SOFTWARE DESIGNER, NEWS�

I’m Joel Spolsky, a so�ware developer in New York City. More
about me.

JOEL ON SOFTWARE

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/
https://www.joelonsoftware.com/author/joelonsoftware/
https://www.joelonsoftware.com/articles/fog0000000036.html
https://www.joelonsoftware.com/articles/fog0000000035.html
https://www.joelonsoftware.com/articles/fog0000000034.html
https://www.joelonsoftware.com/category/reading-lists/software-designer/
https://www.joelonsoftware.com/category/news/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/

12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 2/8

p p g

Also, if your spec never gets read, you get a lot of arguments when the finished
product is delivered. Somebody (management, marketing, or a customer) says:
“wait a minute! You promised me that there would be a Clam Steamer! Where’s
the clam steamer?” And the programmers say, “no, actually, if you look on the
spec on chapter 3, subchapter 4, paragraph 2.3.0.1, you’ll see it says quite
explicitly ‘no clam steamer.'” But that doesn’t satisfy the customer, who is
always right, so the grumpy programmers have to go retrofit a clam steamer
into the thing (making them even more cynical about specs). Or a manager says,
“hey, all the wording on this dialog is too verbose, and there should be an
advertisement at the top of every dialog box.” And the programmers say, in
frustration, “but you approved the spec which precisely listed the layout and
contents of every dialog box!” But of course, the manager hadn’t actually read
the spec, because when he tried, his brain started seeping out through his eye
sockets, and anyway, it was interfering with his Tuesday golf game.

So. Specs are good, but not if nobody reads them. As a spec-writer, you have to
trick people into reading your stu�, and you should also probably make an e�ort
not to cause any already-too-small brains to leak out through eye-sockets.

Tricking people into reading your stu� is usually just a matter of good writing.
But it’s not fair of me to just say “be a good writer” and leave it at that. Here are
four easy rules that you absolutely must follow to make specs that get read.

Rule 1: Be Funny

Yep, rule number one in tricking people into reading your spec is to make the
experience enjoyable. Don’t tell me you weren’t born funny, I don’t buy it.
Everybody has funny ideas all the time, they just self-censor them because they
think that it’s “unprofessional.” Feh. Sometimes you have to break the rules.

If you read the volumes of garbage I’ve written on this web site, you’ll notice that
there are a few lame attempts at being funny scattered throughout. Just four
paragraphs ago I was making a gross body-fluid joke and making fun of
managers for playing golf. Even though I’m not really that funny, I still try pretty
hard, and even the act of flailing around trying to be funny is in itself amusing, in
a sad-clown sort of way. When you’re writing a spec, an easy place to be funny is
in the examples. Every time you need to tell a story about how a feature works,

https://www.joelonsoftware.com/navLinks/fog0000000247.html

12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 3/8

instead of saying:

The user types Ctrl+N to create a new Employee table and starts entering the
names of the employees.

write something like:

Miss Piggy, poking at the keyboard with a eyeliner stick because her chubby
little fingers are too fat to press individual keys, types Ctrl+N to create a new
Boyfriend table and types in the single record “Kermit.”

If you read a lot of Dave Barry, you’ll discover that one of the easiest ways to be
funny is to be specific when it’s not called for. “Scrappy pugs” are funnier than
“dogs.” “Miss Piggy” is funnier than “the user”. Instead of saying “special
interests,” say “le�-handed avocado farmers.” Instead of saying “People who
refuse to clean up a�er their dogs should be punished,” say that they should be
“sent to prisons so lonely that the inmates have to pay spiders for sex.”

Oh, and, by the way, if you think that it’s unprofessional to be funny, then I’m
sorry, but you just don’t have a sense of humor. (Don’t deny it. People without
senses of humors always deny it. You can’t fool me.) And if you work in a
company where people will respect you less because your specs are breezy,
funny, and enjoyable to read, then go find another company to work for,
because life is just too damn short to spend your daylight hours in such a stern
and miserable place.

Rule 2: Writing a spec is like writing code for a brain to execute

Here’s why I think that programmers have trouble writing good specs.

When you write code, your primary audience is the compiler. Yeah, I know,
people have to read code, too, but it’s generally very hard for them. For most
programmers it’s hard enough to get the code into a state where the compiler
reads it and correctly interprets it; worrying about making human-readable
code is a luxury. Whether you write:

void print_count(FILE* a, char * b, int c){
 fprintf(a, “there are %d %s\n”, c, b);}

https://www.joelonsoftware.com/navLinks/fog0000000247.html
http://www.miami.com/mld/miamiherald/living/columnists/dave_barry/
http://www.fogcreek.com/
https://www.joelonsoftware.com/articles/fog0000000069.html

12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 4/8

main(){ int n; n =
10; print_count(stdout, “employees”, n) /* code
deliberately obfuscated */ }

or

printf(“there are 10 employees\n”);

you get the same output. Which is why, if you think about it, you tend to get
programmers who write things like:

Assume a function AddressOf(x) which is defined as the mapping from a
user x, to the RFC-822 compliant email address of that user, an ANSI string.
Let us assume user A and user B, where A wants to send an email to user B.
So user A initiates a new message using any (but not all) of the techniques
defined elsewhere, and types AddressOf(B) in the To: editbox.

This could also have been speced as:

Miss Piggy wants to go to lunch, so she starts a new email and types
Kermit’s address in the “To:” box.

Technical note: the address must be a standard Internet address (RFC-822
compliant.)

They both “mean” the same thing, theoretically, except that the first example is
impossible to understand unless you carefully decode it, and the second
example is easy to understand. Programmers o�en try to write specs which look
like dense academic papers. They think that a “correct” spec needs to be
“technically” correct and then they are o� the hook.

The mistake is that when you write a spec, in addition to being correct, it has to
be understandable, which, in programming terms, means that it needs to be
written so that the human brain can “compile” it. One of the big di�erences
between computers and human brains is that computers are willing to sit there
patiently while you define the terms that you want to use later. But humans
won’t understand what you’re talking about unless you motivate it first. Humans
don’t want to have to decode something, they just want to read it in order and
understand it. For humans, you have to provide the big picture and then fill in

12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 5/8

, y p g p
the details. With computer programs, you start at the top and work your way to
the bottom, with full details throughout. A computer doesn’t care if your
variable names are meaningful. A human brain understands things much better
if you can paint a vivid picture in their mind by telling a story, even if it’s just a
fragment of a story, because our brains have evolved to understand stories.

If you show a chess board, in the middle of a real game of chess, to an
experienced chess player for even a second or two, they will instantly be able to
memorize the position of every piece. But if you move around a couple of pieces
in nonsensical ways that couldn’t happen in normal play (for example, put some
pawns on the first row, or put both black bishops on black squares), it becomes
much, much harder for them to memorize the board. This is di�erent from the
way computers think. A computer program that could memorize a chess board
could memorize both possible and impossible layouts with equal ease. The way
the human brain works is not random access; pathways tend to be strengthened
in our brains and some things are just easier to understand than other things
because they are more common.

So, when you’re writing a spec, try to imagine the person you are addressing it
to, and try to imagine what you’re asking them to understand at every step.
Sentence by sentence, ask yourself if the person reading this sentence will
understand it at a deep level, in the context of what you’ve already told them. If
some members of your target audience don’t know what RFC-822 is, you either
have to define it, or, at the very least, bury the mention of RFC-822 in a technical
note, so that the executive-types who read the spec won’t give up and stop
reading the first time they see a lot of technical jargon.

Rule 3: Write as simply as possible

Don’t use stilted, formal language because you think it’s unprofessional to write
in simple sentences. Use the simplest language you can.

People use words like “utilize” because they think that “use” looks
unprofessional. (There’s that word “unprofessional” again. Any time somebody
tells you that you shouldn’t do something because it’s “unprofessional,” you
know that they’ve run out of real arguments.) In fact I think that many people
think that clear writing means that something is wrong.

12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 6/8

Break things down to short
sentences. If you’re having
trouble writing a sentence
clearly, break it into two or three
shorter sentences.

Avoid walls of text: entire pages
with just text. People get scared
and don’t read them. When was
the last time you noticed a
popular magazine or newspaper
with entire pages of text?
Magazines will go so far as to
take a quote from the article and
print it, in the middle of the
page, in a giant font, just to
avoid the appearance of a full
page of text. Use numbered or
bulleted lists, pictures, charts,
tables, and lots of whitespace so
that the reading “looks” flu�ier.

 “Magazines will go so far as to
take a quote from the article and
print it, in the middle of the
page, in a giant font, just to
avoid the appearance of a full
page of text.”

Nothing improves a spec more than lots and lots of screenshots. A picture can
be worth a thousand words. Anyone who writes specs for Windows so�ware
should invest in a copy of Visual Basic, and learn to use it at least well enough to
create mockups of the screens. (For the Mac, use REAL Basic; for Web pages, use
Front Page or Dreamweaver). Then capture these screenshots (Ctrl+PrtSc) and
paste them into your spec.

Rule 4: Review and reread several times

Um, well, I was originally planning to have a lengthy exegesis of this rule here,
but this rule is just too simple and obvious. Review and reread your spec several
times, OK? When you find a sentence that isn’t super easy to understand, rewrite
it.

12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 7/8

t.

I’ve saved so much time by not explaining Rule 4 that I’m going to add another
rule.

Rule 5: Templates considered harmful

Avoid the temptation to make a standard template for specs. At first you might
just think that it’s important that “every spec look the same.” Hint: it’s not. What
di�erence does it make? Does every book on your bookshelf at home look
exactly the same? Would you want them to?

Worse, if you have templates, what tends to happen is that you add a bunch of
sections to the template for things that you think are important for every
feature. Example: Big Bill decrees that from here on forward, every Microsquish
product shall have an Internet component. So the spec template now has a
section that says “Internet Component.” Whenever somebody writes a spec, no
matter how trivial, they have to fill in that section that says “Internet
Component”, even if they’re just creating the spec for the Microsquish Keyboard.
(And you wondered why those useless Internet shopping buttons started
cropping up like mushrooms on keyboards).

As these sections accumulate, the template gets pretty large. (Here is an
example of a very, very bad template for specifications. Who needs a
bibliography in a spec, for heaven’s sake? Or a glossary?) The trouble with such a
large template is that it scares people away from writing specs because it looks
like such a daunting task.

A spec is a document that you want people to read. In that way, it is no di�erent
than an essay in The New Yorker or a college paper. Have you ever heard of a
professor passing out templates for students to write their college papers? Have
you ever read two good essays that could be fit into a template? Just drop the
idea.

SUBSCRIBE!

You’re reading Joel on So�ware, stu�ed with years and years of completely raving mad articles
about so�ware development, managing so�ware teams, designing user interfaces, running
successful so�ware companies, and rubber duckies.

http://www.construx.com/survivalguide/desspec.htm
https://www.joelonsoftware.com/

12/29/2019 Painless Functional Specifications – Part 4: Tips – Joel on Software

https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/ 8/8

PROUDLY POWERED BY WORDPRESS

← PREVIOUS POST

2000/10/15

If you want to know when I publish something new, I recommend getting an RSS reader like
NewsBlur and subscribing to my RSS feed.

ABOUT THE AUTHOR.

In 2000 I co-founded Fog Creek So�ware, where we created
lots of cool things like the FogBugz bug tracker, Trello, and
Glitch. I also worked with Je� Atwood to create Stack Overflow
and served as CEO of Stack Overflow from 2010-2019. Today I
serve as the chairman of the board for Stack Overflow, Glitch,
and HASH.

NEXT POST →

2000/10/16

https://wordpress.org/
https://www.joelonsoftware.com/2000/10/15/20001015/
https://www.joelonsoftware.com/
https://newsblur.com/
https://www.joelonsoftware.com/feed/
https://stackoverflow.com/
https://glitch.com/
https://hash.ai/
https://www.joelonsoftware.com/2000/10/16/20001016/

