
12/29/2019 Painless Functional Specifications – Part 3: But… How? – Joel on Software

https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/ 1/5

OCTOBER 4, 2000 by JOEL SPOLSKY

Painless Functional Specifications
– Part 3: But… How?

Now that you’ve read all about why you need a spec and what a spec has in it,
let’s talk about who should write them.

Who writes specs?

Let me give you a little Microso� history here. When Microso� started growing
seriously in the 1980s, everybody there had read The Mythical Man-Month, one
of the classics of so�ware management. (If you haven’t read it, I highly
recommend it.) The main point of that book was that when you add more
programmers to a late project, it gets even later. That’s because when you have
n programmers on a team, the number of communication paths is n(n-1)/2,
which grows at O(n).

So the programmers at Microso� were worried about how to write bigger and
bigger programs, when the prevailing wisdom of the day was that adding
programmers just makes things worse.

SOFTWARE DESIGNER, NEWS�

2

I’m Joel Spolsky, a so�ware developer in New York City. More
about me.

JOEL ON SOFTWARE

https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/
https://www.joelonsoftware.com/author/joelonsoftware/
https://www.joelonsoftware.com/articles/fog0000000036.html
https://www.joelonsoftware.com/articles/fog0000000035.html
http://www.amazon.com/exec/obidos/ASIN/0201835959/ref=nosim/joelonsoftware
https://www.joelonsoftware.com/category/reading-lists/software-designer/
https://www.joelonsoftware.com/category/news/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/about-me/
https://www.joelonsoftware.com/

12/29/2019 Painless Functional Specifications – Part 3: But… How? – Joel on Software

https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/ 2/5

Charles Simonyi, Microso�’s long time “chief architect”, suggested the concept
of master programmers. The idea was basically that one master programmer
would be responsible for writing all the code, but he or she would rely on a team
of junior programmers as “code slaves”. Instead of worrying about debugging
every function, the master programmer would basically just prototype each
function, creating the bare outline, and then throw it to one of the junior
programmers to implement. (Of course, Simonyi would be the Master Master
Programmer.) The term “Master Programmer” was a bit too medieval, so
Microso� went with “Program Manager.”

Theoretically, this was supposed to solve the Mythical Man-Month problem,
because nobody has to talk to anyone else — every junior programmer only
talks to the one program manager, and so communication grows at O(n) instead
of O(n).

Well, Simonyi may know Hungarian Notation, but he doesn’t know Peopleware.
Nobody wants to be a code slave. The system didn’t work at all. Eventually,
Microso� discovered that despite the alleged Mythical Man Month, you can still
add smart people to a team and get increased output, although at decreasing
marginal values. The Excel team had 50 programmers when I was there, and it
was marginally more productive than a team of 25 would have been — but not
twice as productive.

The idea of master/slave programming was discredited, but Microso� still had
these people called program managers bouncing around. A smart man named
Jabe Blumenthal basically reinvented the position of program manager.
Henceforth, the program manager would own the design and the spec for
products.

Since then, program managers at Microso� gather requirements, figure out
what the code is supposed to do, and write the specs. There are usually about 5
programmers for every program manager; these programmers are responsible
for implementing in code what the program manager has implemented in the
form of a spec. A program manager also needs to coordinate marketing,
documentation, testing, localization, and all the other annoying details that
programmers shouldn’t spend time on. Finally, program managers at Microso�
are supposed to have the “big picture” of the company in mind, while
programmers are free to concentrate on getting their bits of code exactly right

2

http://msdn.microsoft.com/library/techart/hunganotat.htm
http://www.amazon.com/exec/obidos/ASIN/0932633439/ref=nosim/joelonsoftware/

12/29/2019 Painless Functional Specifications – Part 3: But… How? – Joel on Software

https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/ 3/5

programmers are free to concentrate on getting their bits of code exactly right.

Program managers are invaluable. If you’ve ever complained about how
programmers are more concerned with technical elegance than with
marketability, you need a program manager. If you’ve ever complained about
how people who can write good code never do a good job of writing good
English, you need a program manager. If you’ve ever complained about how
your product seems to dri� without any clear direction, you need a program
manager.

How do you hire a program manager?

Most companies don’t even have the concept of program manager. I think that’s
too bad. In my time, the groups at Microso� with strong program managers had
very successful products: Excel, Windows 95, and Access come to mind. But
other groups (such as MSN 1.0 and Windows NT 1.0) were run by developers
who generally ignored the program managers (who weren’t very good anyway,
and probably deserved to be ignored), and their products were not as
successful.

Here are three things to avoid.

1. Don’t promote a coder to be a program manager. The skills for being a
good program manager (writing clear English, diplomacy, market awareness,
user empathy, and good UI design) are very rarely the skills for being a good
coder. Sure, some people can do both, but they are rare. Rewarding good coders
by promoting them to a di�erent position, one that involves writing English, not
C++, is a classic case of the Peter Principle: people tend to be promoted to their
level of incompetence.

2. Don’t let the marketing people be program managers. No o�ense, but I
think my readers will agree that good marketing people rarely have a good
enough grasp of the technology issues to design products.

Basically, program management is a separate career path. All program
managers need to be very technical, but they don’t have to be good coders.
Program managers study UI, meet customers, and write specs. They need to get
along with a wide variety of people — from “moron” customers, to irritating
hermit programmers who come to work in Star Trek uniforms, to pompous sales

http://www.amazon.com/exec/obidos/ASIN/1568491611/ref=nosim/joelonsoftware

12/29/2019 Painless Functional Specifications – Part 3: But… How? – Joel on Software

https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/ 4/5

guys in $2000 suits. In some ways, program managers are the glue of so�ware
teams. Charisma is crucial.

3. Don’t have coders report to the program manager. This is a subtle mistake.
As a program manager at Microso�, I designed the Visual Basic (VBA) strategy for
Excel and completely speced out, to the smallest detail, how VBA should be
implemented in Excel. My spec ran to about 500 pages. At the height of
development for Excel 5.0, I estimated that every morning, 250 people came to
work and basically worked o� of that huge spec I wrote. I had no idea who all
these people were, but there were about a dozen people on the Visual Basic
team alone just writing documentation for this thing (not to mention the team
writing documentation from the Excel side, or the full time person who was
responsible for hyperlinks in the help file.) The weird thing was that I was at the
“bottom” of the reporting tree. That’s right. NOBODY reported to me. If I wanted
people to do something, I had to convince them that it was the right thing to do.
When Ben Waldman, the lead developer, didn’t want to do something I had
speced out, he just didn’t do it. When the testers complained that something I
had speced was impossible to test completely, I had to simplify it. If any of
these people had reported to me, the product wouldn’t have been as good.
Some of them would have thought that it’s inappropriate to second-guess a
superior. Other times, I would have just put my foot down and ordered them to
do it my way, out of conceit or nearsightedness. As it was, I had no choice but to
build consensus. This form of decision making was the best way to get the right
thing done.

The final article in my series on specs talks about how to write good specs that
people want to read.

SUBSCRIBE!

You’re reading Joel on So�ware, stu�ed with years and years of completely raving mad articles
about so�ware development, managing so�ware teams, designing user interfaces, running
successful so�ware companies, and rubber duckies.

If you want to know when I publish something new, I recommend getting an RSS reader like
NewsBlur and subscribing to my RSS feed.

https://www.joelonsoftware.com/articles/fog0000000033.html
https://www.joelonsoftware.com/
https://newsblur.com/
https://www.joelonsoftware.com/feed/

12/29/2019 Painless Functional Specifications – Part 3: But… How? – Joel on Software

https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/ 5/5

PROUDLY POWERED BY WORDPRESS

← PREVIOUS POST

2000/10/04

ABOUT THE AUTHOR.

In 2000 I co-founded Fog Creek So�ware, where we created
lots of cool things like the FogBugz bug tracker, Trello, and
Glitch. I also worked with Je� Atwood to create Stack Overflow
and served as CEO of Stack Overflow from 2010-2019. Today I
serve as the chairman of the board for Stack Overflow, Glitch,
and HASH.

NEXT POST →

2000/10/10

https://wordpress.org/
https://www.joelonsoftware.com/2000/10/04/20001004/
https://stackoverflow.com/
https://glitch.com/
https://hash.ai/
https://www.joelonsoftware.com/2000/10/10/20001010/

