
Home / Security / Identity & Access Management

Micro-size it!

Microservices apps: Do iden�ty, access management
without the overhead

Bernard Golden, CEO, Navica

Microservices-based applications stand up better to an external attack than do traditional, monolithic applications. But
how do you ensure that internal, intra-application communications are secure? That is, how do you con�gure identity
and access management (IAM) in a distributed application?

This is a trickier question than you might think. With monolithic applications, securing intra-application communication
is not a concern because you maintain all intra-process communication within a single executable, and access to all
functionality comes from within the same process. However, if someone manages to break into the monolith, that person
has access to everything in your executable.

Microservices-based applications consist of distributed components that communicate across a network, so you must
ensure that only appropriate traf�c comes to each service component, even though those components do not control
what sits at the other end of the network connection.

[Get Guide: Best Practices for GDPR and CCPA Compliance]

https://techbeacon.com/
https://techbeacon.com/security
https://techbeacon.com/categories/identity-access-management
javascript:void(0);
https://techbeacon.com/contributors/bernard-golden
https://techbeacon.com/contributors/bernard-golden
http://techbeacon.com/5-fundamentals-successful-microservice-design
https://techbeacon.com/node/3431/

3 op�ons for iden�ty and access management

The most common IAM technique for external-facing applications, whether on premises or in the cloud, is to combine an
initial, heavyweight authorization process with a subsequent, lighter-weight one. On the initial login, users typically
must provide a user ID and password. Then, on subsequent accesses, a cookie-based, randomized token gets passed back
and forth. The token is accepted as proof of identity, and the application allows further interaction.

This approach means that the initial authentication only occurs once, with the overhead of processing the user
ID/password information. Subsequent interactions require only that the submitter pass along the token and that the
recipient con�rm that the token is already known. This improves overall performance, ensuring that the user experience
is not impaired by repeated, lengthy delays as the IAM process executes. The token usually has a timeout set, so that this
lighter-weight authentication is only available for a limited time.

So what is the right way to accomplish this same IAM function in a microservices-based application? Your application
must ensure appropriate levels of communication security without imposing a performance penalty. For IAM in a
monolithic application, there’s just one communication: From the user to the application interface. Everything else
happens within the application executable. With microservices, you have multiple network communication events as an
end-user event cascades through the collection of services associated with a speci�c branch of execution.

There are three approaches to microservices IAM you can take, and each carries with it bene�ts and drawbacks.

1. Provide tradi�onal authen�ca�on on communica�ons

The user's initial interaction with a microservices-based application should use the same IAM process as does a
monolithic application. It should offer a user ID/password, with the externally facing application component performing
authentication and authorization. Subsequent communication between the user and this component is then established
using the cookie-and-token approach I outlined above.

But what happens as the request cascades through the downstream services? You could have each calling service go
through a similar ID/password validation process, but this repeatedly imposes a heavyweight ID/password lookup
process. An approach that requires this lookup process for every communication between a caller/called service pair
would be even worse. Imagine the aggregate authentication overhead this would in�ict on the application, and the
corresponding performance hit your application would suffer.

So this approach is not acceptable within the constraints of needing adequate application performance to support user
satisfaction.

2. Assume communica�on security already exists

There’s no alternative to using external IAM in the initial heavyweight/subsequent lighter-weight cookie/token approach
described above. But once communication enters the internal services that make up the application, you can assume full
authentication based on acceptance of the caller/called service pair. In other words, internal communication within the
application means that every call to an internal application service will originate from another service.

In your application security design, you might assume that any access by one application service to another is
appropriate and that for each internal service, full authentication of the end user has already been performed. Any intra-
application processing could then be completed on behalf of an authenticated user without further authentication.

On the positive side, this approach has the bene�t of simplicity. Once you have performed the initial authentication, all
other application components are then free of IAM overhead. This is bound to improve application performance.

http://techbeacon.com/developers-basic-guide-cloud-identity-management
https://events.itrevolution.com/eur/?utm_source=TechBeacon&utm_medium=BannerAds&utm_campaign=DOES19%20London

The downside is that, this feels a bit ... squishy? Insecure? Certainly, allowing unfettered network communication among
components �ies in the face of long-standing best practices that require some level of authentication and authorization
in applications. So that leaves one last option.

[Webinar: Data protection: Your biggest reputational risk?]

3. Use the cookie/token communica�on mechanism

If you want to avoid relying on heavyweight authentication and authorization processes in your IAM strategy, but you
don’t feel comfortable letting internal microservices components communicate without IAM, consider leveraging the
cookie/token approach. The token must be stored inside your application, so you can verify and accept ongoing
submissions of the cookie by the user's browser. But instead of storing the token inside the user-facing application
executable, where it is accessible only to that executable, you place the token in a cache residing inside your application
cluster.

In this scenario, every communication between service components carries a token, in addition to the usual service
payload information. The receiving service takes the token, validates it, and, if the token is appropriate, executes its
function using the payload provided by the calling service. The return payload also includes the token so that the calling
service can validate the appropriateness of the returned information.

This approach does require a comparison of the passed token with what resides in the token cache, but that shouldn't
take more than a few milliseconds. To be fair, this is a small, but not insigni�cant, amount of time and would, inevitably,
impose a small performance hit. However, in the interest of overall application security, the overhead of token checking
should be acceptable.

Performance versus security: Ge�ng to good enough

The challenge of providing IAM for internal microservices re�ects the truism in software engineering that every
improvement brings its own complexity. While the bene�ts of using microservices are undeniable, new issues come to the
fore as well. In the world of monolithic applications, intra-application IAM was unnecessary.

In the microservices world, IAM needs to be tackled. While you can choose a secure, but heavyweight, formal IAM
process for every service-to-service communication, the overhead of this approach will probably make your application
too slow for your users.

On the other hand, running without any intra-application security maintains the highest possible performance, but
you're relying on the assumption that there is no need to check security because heavyweight IAM has already been
performed at the user level.

In the end, this topic will no doubt be subject to extensive evaluation in real-world environments, but best practices are
converging toward a lightweight, but still present, token-based IAM. This is suf�cient for security purposes, and
acceptable for application performance purposes.

Are you considering an alternative approach? If you've had this debate in your organization, I'd like to hear how you
decided to proceed.

Image credit: Flickr

[Webinar: Five steps to implement a universal policy strategy (July 18)]

DevOps Enterprise Summit
London: Register Today

For�fy on Demand:
Applica�on Security as a
Service

Radica� Group: Informa�o
Archiving Market Quadran
Report 2019

Subscribe to TechBeacon

Get fresh whitepapers, reports,
case studies, and articles weekly.

 SUBSCRIBE

 CONFERENCE

 FREE TRIAL

 REPORT

https://www.brighttalk.com/webcast/6633/352874?utm_source=techbeacon&utm_medium=techbeacon&utm_campaign=00134846
https://flic.kr/p/eZKoj7
http://www.microfocus.com/en-us/marketing/esp-webinars?commid=360974&utm_source=techbeacon&utm_medium=techbeacon&utm_campaign=00134846
https://events.itrevolution.com/eur/?utm_source=TechBeacon&utm_medium=BannerAds&utm_campaign=DOES19%20London
https://www.microfocus.com/en-us/products/application-security-testing/free-trial?utm_source=TechBeacon&utm_campaign=00134846
https://www.microfocus.com/en-us/assets/information-management-and-governance/information-archiving-radicati-group-market-quadrant-report-2019?utm_campaign=00134846
javascript:void(0);

Topics: Security, Identity & Access Management

More from TechBeacon

How to stop email attacks from compromising your business

Son of Rowhammer: None of us are safe from RAMBleed

How to track security problems in your Kubernetes deployments

Identity and Access
Management (IAM)

Microservices App Dev

Ar�cle Tags

Topics

App Dev & Testing

DevOps

Enterprise IT

Security

TechBeacon

About

Our Contributors

Terms of Use

Privacy

Brought to you by

© Copyright 2015 – 2019 Micro Focus or one of its af�liates

https://techbeacon.com/security
https://techbeacon.com/categories/identity-access-management
https://techbeacon.com/security/how-stop-email-attacks-compromising-your-business
https://techbeacon.com/security/son-rowhammer-none-us-are-safe-rambleed
https://techbeacon.com/security/how-track-security-problems-your-kubernetes-deployments
javascript:void(0);
https://techbeacon.com/tags/identity-access-management-iam
https://techbeacon.com/tags/microservices
https://techbeacon.com/tags/app-dev
https://techbeacon.com/app-dev-testing
https://techbeacon.com/devops
https://techbeacon.com/enterprise-it
https://techbeacon.com/security
https://techbeacon.com/aboutus
https://techbeacon.com/contributors
https://software.microfocus.com/en-us/select/terms-of-use
https://software.microfocus.com/en-us/legal/privacy
https://techbeacon.com/
https://twitter.com/TechBeaconCOM
https://www.linkedin.com/company/techbeacon
https://www.facebook.com/myTechBeacon
https://www.youtube.com/channel/UCYu4Vao_qcOgnUT5qXSgilQ
https://techbeacon.com/feeds
https://software.microfocus.com/en-us/home?utm_source=techbeacon&utm_medium=organic&utm_campaign=techbeacon_traffic&utm_content=footer

