
How Do You Secure Microservices?
by Tom Smith · Oct. 08, 17 · DevOps Zone · Interview

To gather insights on the state of microservices today, we spoke with 19 executives who are familiar with the
current state of microservices architecture. We asked them, "What kind of security techniques and tools do you find
most effective for securing microservices?" Here's what they told us:

APIs, Acess Controls, and Gateways
Well, most of our microservices support our internal API, so they are just not visible and not reachable by
external agents. If you break our API, you have HTTP-only access to our microservices: limit what can be
done in HTTP, open only HTTP access from your Cloud itself and it is enough for our needs. A rule of thumb
we applied to many microservices: no access to DB. Just process JSONs and reach other microservices or
API itself again.

Security domain boundaries – role-based authentication in place. Identification and authentication –
propagate security from the database tier to the application API – who can access, deploy, scale. Do not
lose control over the service.

API access control for microservices. Borrowing open-web API capability. Put together standards for
access control in the API architecture – certificates, tokens, networks using Torch, Kubernetes, and
CloudFoundry.

Need API gateway key or login. SSL at the transport layer. Whitelist ISPs that can access.

JSON Web Tokens, Amazon Virtual Private Cloud, and API Gateway pattern.

API gateways.

There are no silver bullets. We take a layered approach with coding standards, peer reviews, automated
testing, and third-party pen testing. More secure profile in public with APIs.

API gateways are the most commonly used solution, and with good reason – they provide many great out-
of-the box management services in addition to security. But when we’re talking standalone microservices,
OpenID and OAuth is the way to go.

Design thinking for security with developers and architects. Think about security from the beginning. Best
practice is OWAT2 with user authentication. Make sure you are doing regular security scans and that you
have no leaks. Docker has security scanning. All talking via APIs. One single point of entry with API
gateways and security platforms.

API security is just as critical as application security. Not just native first-party apps. That’s where ID
becomes more critical. Need to integrate to the identity layer- how to onboard, how to authorize access and
have end-to-end coverage from the frontend to the backend. More complex patterns from the developer

https://dzone.com/devops-tutorials-tools-news
https://dzone.com/users/1450207/ctsmithiii.html
https://dzone.com/

perspective. Not just front door access security. Zero-trust architecture.

APIs are an effective way to build governance right into the microservices architecture. APIs become
these contracts by the developers on what the microservices will do and more importantly what it won't do.
This makes it easy for central IT to govern these microservices since their SLAs can be managed through API
gateways that act as proxies for the microservices. This ensures that there is the right balance of governance
for IT and flexibility for the domain teams.

Other
SELinux is essentially required if you're running microservices. SELinux will prevent a program from
running anything on the system outside of its own context. This makes it so that an attacker capable of
compromising your container has very few options and often can't do anything on the system. Proper
knowledge and use of SELinux for any production workload containers is a must. Apart from that, treat the
container and its dependent containers the same way you would your operating system. Update and test
regularly.

Because we focus on application modernization for enterprises with mature ecosystems, we often shift our
security model to suit what is in place. In our ideal configuration, we are able to tie into the existing SSO
and authorization schemes to generate a JWT model. We “double wrap” the encryption of our JWTs to
allow services to appropriately access public session data, including insecure APIs outside the enterprise. The
inner layer of encryption is readable only to our trusted servers that hold the keys. The JWT with the inner
security layer keeps our service layers stateless while opening up interactions across different tiers of trust in
the architecture.

It’s the same as other apps. Integrate static application security testing into the build process. This works
even better with microservices because it happens more frequently. Process-wise you bring security into the
process definition. Turning to dynamic versus static testing. Able to see more risks better once the application
is deployed.

The efficacy of security techniques and tools depend on the environment in which the microservice is
deployed into. An obvious tool for securing endpoints is OAuth. Most big providers of web service
endpoints are relying on OAuth for security.

Encrypt all data at rest. Full disc encryption. Authenticate, authorize security group settings in tooling.
We’re behind load balancers on the web. Automate everything. Think through security with regards to the
architecture as well as encryption. Use third-parties to come in and audit your practices. Document, audit, and
certify your security process to ensure everything is locked down for PCI, ISO, and other compliance
requirements.

Work with information security, architects, and engineers for code reviews and static code analysis.
InfoSec takes problem reports and watches for patterns and conduct proof of concept attacks.

Using a great container scheduler to manage microservices can help with security.

As you deliver microservices with smaller team responsibilities you take a supply chain approach to delivery
with proper role-based access controls. Lockdown inputs into service delivered so you can control who is
putting it out there. Robust, centralized authentication and authorization policies for access.

How are you securing the microservices you are working on?

Here’s who we spoke to:

Thomas Butt, CTO, CardCash

Matt McLarty, Vice President, API Academy, CA Technologies

Brian Dawson, DevOps Evangelist, CloudBees

Lucas Vogel, Founder, Endpoint Systems

Ali Hodroj, V.P. Products and Strategy, GigaSpaces

Job van der Voort, VP Product, GitLab

Kevin Sutter, MicroProfile and Java EE Architect, IBM

Sandeep Singh Kohli, Director of Marketing, MuleSoft

Karl McGuinness, Senior Director of Identity, Okta

Ross Smith, Chief Architect, PITSS America

Mike LaFleur, Director of Solution Architecture, Provenir

Gianni Fiore, CTO, Rebrandly

Peter Yared, CTO, Sapho

Sha Ma, V.P. Software Engineering, SendGrid

Keshav Vasudevan, Product Marketing Manager, Swagger/SwaggerHub, SmartBear

Chris McFadden, V.P. Engineering and Operations, SparkPost

Christian Beedgen, Cofounder and CTO, Sumo Logic

Todd Millecam, CEO, SWYM Systems, Inc.

Tim Jarret, Senior Director of Product Marketing, Veracode

Like This Article? Read More From DZone

Topics: DEVOPS , MICROSERVICES , SECURITY , API SECURITY , API GATEWAY

Opinions expressed by DZone contributors are their own.

Next Steps to Securing Your APIs
and Microservices

Serverless and API Gateways

API Gateway to the Rescue Free DZone Refcard
DevOps for Database

https://www.cardcash.com/
http://www.ca.com/
http://www.cloudbees.com/
https://www.endpointsystems.com/
http://www.gigaspaces.com/
http://www.gitlab.com/
http://www.ibm.com/
http://www.mulesoft.com/
http://www.okta.com/
http://www.pitss.com/
http://www.provenir.com/
http://www.rebrandly.com/
http://www.sapho.com/
http://www.sendgrid.com/
http://www.smartbear.com/
http://www.sparkpost.com/
http://www.sumologic.com/
http://www.swymsys.com/bio_todd_millecam.html
http://www.veracode.com/
https://dzone.com/articles/next-steps-to-securing-your-apis-and-microservices?fromrel=true
https://dzone.com/articles/next-steps-to-securing-your-apis-and-microservices?fromrel=true
https://dzone.com/articles/serverless-and-api-gateways-1?fromrel=true
https://dzone.com/articles/serverless-and-api-gateways-1?fromrel=true
https://dzone.com/articles/gateway-pattern?fromrel=true
https://dzone.com/articles/gateway-pattern?fromrel=true
https://dzone.com/refcardz/devops-for-database?fromrel=true
https://dzone.com/refcardz/devops-for-database?fromrel=true

IN PROGRESS

