
MenuMenu

DECEMBER ��� ���� • 6666666 comments comments comments comments comments comments comments

9 min read

WordPressWordPressWordPressWordPressWordPressWordPressWordPress, PluginsPluginsPluginsPluginsPluginsPluginsPlugins, PHPPHPPHPPHPPHPPHPPHP, TestingTestingTestingTestingTestingTestingTesting

Share on TwitterTwitterTwitterTwitterTwitterTwitterTwitter or LinkedInLinkedInLinkedInLinkedInLinkedInLinkedInLinkedIn

Collins is a web developer by day and a freelance writer and blogger by
night. Developer of the popular ProfilePressProfilePressProfilePressProfilePressProfilePressProfilePressProfilePress as well as MailOptinMailOptinMailOptinMailOptinMailOptinMailOptinMailOptin. When
not wrangling … More about More about More about More about More about More about More about CollinsCollinsCollinsCollinsCollinsCollinsCollins…………………

A B O U T T H E A U T H O R

An Introduction To Automated Testing

Of WordPress Plugins With PHPUnit

https://www.smashingmagazine.com/
https://www.smashingmagazine.com/category/wordpress
https://www.smashingmagazine.com/category/plugins
https://www.smashingmagazine.com/category/php
https://www.smashingmagazine.com/category/testing
https://twitter.com/intent/tweet?text=An%20Introduction%20To%20Automated%20Testing%20Of%20WordPress%20Plugins%20With%20PHPUnit&url=https%3A%2F%2Fwww.smashingmagazine.com%2f2017%2f12%2fautomated-testing-wordpress-plugins-phpunit%2f&via=smashingmag
https://smashing-delivery.herokuapp.com/ball?uri=//www.linkedin.com/shareArticle?url=https://www.smashingmagazine.com%2f2017%2f12%2fautomated-testing-wordpress-plugins-phpunit%2f&title=An%20Introduction%20To%20Automated%20Testing%20Of%20WordPress%20Plugins%20With%20PHPUnit
https://profilepress.net/
https://mailoptin.io/
https://www.smashingmagazine.com/author/agbonghamacollins
https://www.smashingmagazine.com/the-smashing-newsletter/
https://www.smashingmagazine.com/author/agbonghamacollins

Upgrade your inbox and get our editors’ picks 2× a month. Earlier issues.Earlier issues.Earlier issues.Earlier issues.Earlier issues.Earlier issues.Earlier issues.

Smashing Newsletter

Your email

SubscribeSubscribe →→

https://www.smashingmagazine.com/the-smashing-newsletter/
https://www.smashingmagazine.com/the-smashing-newsletter/

Q U I C K S U M M A RY ↬ You really don’t want to spend hours manually testing

every part of your WordPress plugin to ensure nothing is broken every time you
deploy a new version — do you? In this tutorial, you will learn how to test
efficiently with automated testing.

WORDPRESS IS A POPULAR CONTENT MANAGEMENT

system for building websites because it is easy to get
started with and a ton of themes and plugins are
available to extend its feature set. The main reason
WordPress has a lot of plugins and themes is because it's
easy for developers of any level to start building one.

Most of its developers are not experienced, and they do not write tests for
their work, perhaps because of the following reasons:

There aren't many discussions going on about unit testing, so they might not
know that testing is even possible.

They do not believe in the value of writing tests for their code, or they think it
will slow them down.

They believe that testing to see whether their plugin or theme works in the
browser is enough.

In this tutorial, we will learn what automated testing is and its importance, get to
know PHPUnit and WP-CLI, learn how to write a test and, finally, set up continuous
automated testing with Travis CI.

We are opting to use Travis CI because it offers seamless integration with GitHub;
you don't have to go to your repository and set up any connection between them.
And it is free for public repositories. Unlike its competitors, such as Semaphore CI,

GitLab CI and CircleCI, Travis CI does not offer a free private repository plan.
However, none of its competitors offer seamless integration with GitHub as it does.

According to WikipediaAccording to WikipediaAccording to WikipediaAccording to WikipediaAccording to WikipediaAccording to WikipediaAccording to Wikipedia, automated testing, or test automation, is the use of special
software (separate from the software being tested) to control the execution of tests
and the comparison of actual outcomes with predicted outcomes. Test automation
can automate some repetitive but necessary tasks in a formalized testing process
already in place, or perform additional testing that would be difficult to do manually.

What Is Automated Testing?

Caution: shameless plug ahead! Continue reading below ↓

Up, up to the stars! For our second SmashingConf TorontoSmashingConf TorontoSmashingConf TorontoSmashingConf TorontoSmashingConf TorontoSmashingConf TorontoSmashingConf Toronto we’ll explore the
bright and dark sides of front-end and UX: CSS Grid, service workers,
cross-cultural design, performance and CSS/JavaScript techniques. Instead
of showing slides, presenters will show how they actually work, from live
debugging to live redesign. June 25–26.

All speakers & topics →All speakers & topics →

https://en.wikipedia.org/wiki/Software_testing
https://smashingconf.com/toronto-2019/
https://smashingconf.com/toronto-2019/
https://smashingconf.com/toronto-2019/

There are several types of testing. Of all, unit testing is the most popular. Unit tests
verify that a block of code, function or class method does what it is intended to do.
We'll be doing unit testing in this tutorial.

Automated testing helps to detect bugs so that they don't make their way to
production. No doubt, a plugin coded and tested would take longer to complete than
one that is not tested. However, the resulting plugin would contain fewer or no
bugs.

Let’s see a simple real-world example of how unit tests are invaluable and what we
can use them for.

My WordPress lead-generation pluginlead-generation pluginlead-generation pluginlead-generation pluginlead-generation pluginlead-generation pluginlead-generation plugin has an OptinThemesRepositoryOptinThemesRepository class, with
an add()add() method for adding new opt-in form templates, and a get()get() method for
the retrieval of an opt-in form template.

To ensure both add()add() and get()get() work as intended now and in the future, I wrote
the test below.

https://mailoptin.io/

If, in future, this test started to fail, I would know there is a problem and would
know the exact function, class method or spot in my plugin where it is occurring.

Now that we know what automated testing is, let's see more benefits.

While developing software, you can easily find bugs with automated testing tools.
This can save a lot of time and effort in tracking down bugs.

A tester with many years of experience can make mistakes when they have to
prepare the same boring manual test scripts over and over again. Automated testing

public function testAddGetMethods()

{

 $kick_optin_form = array(

 'name' => 'Kick',

 'optin_class' => 'kick',

 'optin_type' => 'kick',

 'screenshot' => MAILOPTIN_ASSETS_URL . 'img/kick.png'

);

 // add kick optin theme

 OptinThemesRepository::add($kick_optin_form);

 $result = OptinThemesRepository::get('kick');

 $this->assertEquals($kick_optin_form, $result);

}

Benefits Of Automated Testing

EARLY BUG DETECTION

HIGHER SOFTWARE QUALITY

not only yields accurate results, but also saves time.

Automated testing tools can track each and every test script. The execution of each
test script can be seen in visual logs. The visual log, or report, typically displays the
number of test scripts executed and their status (for example, passed, failed or
skipped), their reported bugs and hints on how to fix the bugs.

Before we go over how to set up and write tests, let's create a simple plugin to use as
a case study.

We are going to build a simple plugin that displays Google and Bing webmaster
verification meta tags in the header of WordPress’ front end. The plugin is hosted ininininininin
my GitHub accountmy GitHub accountmy GitHub accountmy GitHub accountmy GitHub accountmy GitHub accountmy GitHub account.

The code for this plugin below will go in the wp-meta-verify.phpwp-meta-verify.php file.

EASY AND ROBUST REPORTING

W R I K E

Let brilliant minds be brilliant.
Prioritize your creativity, Wrike will take care of the
rest.

Caution: shameless plug ahead! Continue reading below ↓

TRY WRIKE!

Building A WordPress Plugin

https://github.com/collizo4sky/wp-meta-verify
https://smashing-delivery.herokuapp.com/ball?uri=http://bit.ly/wrikenewbigbanner

You might notice that we didn't include a settings page in the plugin, where you
would typically save the Google and Bing verification code to. I did this on purpose
to keep this simple and to focus our attention on what matters most. However,
get_option('wpmv_google_code')get_option('wpmv_google_code') and get_option('wpmv_bing_code')get_option('wpmv_bing_code') assume

that there is a settings page, and they retrieve the verification codes from there.

<?php

class WP_Meta_Verify

{

 public function __construct()

 {

 add_action('wp_head', \[$this, 'header_code']);

 }

 public function header_code()

 {

 $google_code = get_option('wpmv_google_code');

 $bing_code = get_option('wpmv_google_code');

 echo $this->google_site_verification($google_code);

 echo $this->bing_site_verification($bing_code);

 }

 public function google_site_verification($code)

 {

 return "<meta name=\"google-site-verification\" content=\"$code\">";

 }

 public function bing_site_verification($code)

 {

 return "<meta name=\"msvalidate.01\" content=\"$code\">";

 }

}

new WP_Meta_Verify();

PHPUnitPHPUnitPHPUnitPHPUnitPHPUnitPHPUnitPHPUnit is the de facto testing tool for PHP, whereas WP-CLIWP-CLIWP-CLIWP-CLIWP-CLIWP-CLIWP-CLI is the official command
line interface for WordPress.

Prior to WP-CLI, setting up PHPUnit testingsetting up PHPUnit testingsetting up PHPUnit testingsetting up PHPUnit testingsetting up PHPUnit testingsetting up PHPUnit testingsetting up PHPUnit testing for WordPress plugins was a pain. WP-
CLI has a great guide on setting it upguide on setting it upguide on setting it upguide on setting it upguide on setting it upguide on setting it upguide on setting it up; however, we will still go over the steps here.

To install PHPUnitinstall PHPUnitinstall PHPUnitinstall PHPUnitinstall PHPUnitinstall PHPUnitinstall PHPUnit, run the following commands.

Note: We are explicitly installing 5.x5.x because that's what WordPress supports
when you’re running PHP 7 or above, which I have on my machine. Install PHPUnit
4.8 if you are running PHP version 5.

Run phpunit --versionphpunit --version to confirm it's been installed.

To install WP-CLI, run the following commands.

Run wp --infowp --info to confirm its installation.

Unit Testing A WordPress Plugin

INSTALL PHPUNIT

composer global require phpunit/phpunit:5.*

INSTALL WP-CLI

curl -O https://raw.githubusercontent.com/wp-cli/builds/gh-pages/phar/wp-cli

chmod +x wp-cli.phar

sudo mv wp-cli.phar /usr/local/bin/wp

https://phpunit.de/
http://wp-cli.org/
https://make.wordpress.org/core/handbook/testing/automated-testing/phpunit/
https://make.wordpress.org/cli/handbook/plugin-unit-tests/
https://phpunit.de/manual/current/en/installation.html

Having installed PHPUnit and WP-CLI, we will use the latter to set up the unit test
for the plugin.

Change your terminal’s directory to the root of your WordPress installation, and run
the command below to generate the plugin test files.

Below is what the structure of the plugin will look like after the command above
generates the test files.

|-bin/|-bin/

|----install-wp-tests.sh|----install-wp-tests.sh

|-tests/|-tests/

|----bootstrap.php|----bootstrap.php

|----test-sample.php|----test-sample.php

|-.travis.yml|-.travis.yml

|-phpcs.xml.dist|-phpcs.xml.dist

|-phpunit.xml.dist|-phpunit.xml.dist

|-wp-meta-verify.php|-wp-meta-verify.php

Note: By default, the wp scaffold plugin-testswp scaffold plugin-tests command generates a Travis CI
configuration file. You can specify a --ci--ci flag to generate a configuration file for

S L A C K

Bring your team together with Slack, the
collaboration hub for work.

Caution: shameless plug ahead! Continue reading below ↓

LE ARN MORE

SET UP PLUGIN UNIT TEST

wp scaffold plugin-tests wp-meta-verify

https://smashing-delivery.herokuapp.com/ball?uri=//srv.buysellads.com/ads/click/x/GTND42QMCESDLKJUCAB4YKQMCWBD523YCKBDPZ3JCWBIV2QLC6SICK7KC6BIP23NF6SDTK3EHJNCLSIZ

the CI service you use, like so: wp scaffold plugin-tests --c gitlabwp scaffold plugin-tests --c gitlab . As at the
time of writing, only Travis CI, CircleCI and GitLab CI are supported.

Change your terminal’s directory to your plugin’s directory, and run the installation
script:

bin/install-wp-tests.sh wordpress_test root '' localhost latestbin/install-wp-tests.sh wordpress_test root '' localhost latest

If you’re like me, then your MySQL username is not rootroot , and the password is not
empty. For example, suppose the username is homesteadhomestead and the password is
secretsecret . You would run the installation script like so:

Run the phpunitphpunit command to run the default test in tests/test-sample.phptests/test-sample.php .

PHPUnit test result (Large previewLarge previewLarge previewLarge previewLarge previewLarge previewLarge preview)

cd path-to-wordpress-plugin

bin/install-wp-tests.sh wordpress_test homestead 'secret' localhost latest

https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/c92d3a38-73e8-41d9-95d8-756f7440e53e/1-phpunit-command-large-opt.png
https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/c92d3a38-73e8-41d9-95d8-756f7440e53e/1-phpunit-command-large-opt.png

Create a test-wp-meta-verify.phptest-wp-meta-verify.php file in the teststests folder. It will contain our
plugin tests with the following setUpsetUp class.

It is worth noting that in order for a method to be considered a unit test, it must be
prefixed with testtest . A best practice is to add a TestTest suffix to every test class,
although it is not required. See WP_Meta_VerifyTestWP_Meta_VerifyTest .

Confused about what setUp()setUp() does? Just know that PHPUnit runs it once before
each test method (and on fresh instances) of the test case class. There is also
tearDown()tearDown() , but it is run after each test method. There are also
setUpBeforeClass()setUpBeforeClass() and tearDownAfterClass()tearDownAfterClass() , which run before and after each

WRITE OUR PLUGIN TESTS

<?php

class WP_Meta_VerifyTest extends WP_UnitTestCase

{

 public function setUp()

 {

 parent::setUp();

 $this->class_instance = new WP_Meta_Verify();

 }

 public function test_google_site_verification()

 {

 }

 public function test_bing_site_verification()

 {

 }

}

test case, respectively. A test case is basically a class that contains a number of test
methods. See the WordPress HandbookWordPress HandbookWordPress HandbookWordPress HandbookWordPress HandbookWordPress HandbookWordPress Handbook and the PHPUnit documentationPHPUnit documentationPHPUnit documentationPHPUnit documentationPHPUnit documentationPHPUnit documentationPHPUnit documentation for more
information.

From the class above, it is pretty obvious we are going to be writing tests for the
google_site_verificationgoogle_site_verification and bing_site_verificationbing_site_verification methods of our plugin

class.

Basically, the tests will ensure that both methods return the correct meta tag when
Google and Bing webmaster verification codes are passed to them as arguments.

Run phpunitphpunit , and you should see an output similar to the screenshot below.

public function test_google_site_verification()

{

 $meta_tag = $this->class_instance->google_site_verification('B6wFaCRbzWE42S

 $expected = '<meta name="google-site-verification" content="B6wFaCRbzWE42Sy

 $this->assertEquals($expected, $meta_tag);

}

public function test_bing_site_verification()

{

 $meta_tag = $this->class_instance->bing_site_verification('B6wFaCRbzWE42

 $expected = '<meta name="msvalidate.01" content="B6wFaCRbzWE42SyxSvKUOyy

 $this->assertEquals($expected, $meta_tag);

}

https://make.wordpress.org/core/handbook/testing/automated-testing/writing-phpunit-tests/#advanced-topics
https://phpunit.de/manual/current/en/fixtures.html

PHPUnit output (Large previewLarge previewLarge previewLarge previewLarge previewLarge previewLarge preview)

Travis CITravis CITravis CITravis CITravis CITravis CITravis CI is a hosted, distributed continuous integration service used to build and
test software projects hosted on GitHub.

To use Travis CI, therefore, we have to publish our plugin on GitHub. Go ahead and
do that nowdo that nowdo that nowdo that nowdo that nowdo that nowdo that now. Feel free to refer to minerefer to minerefer to minerefer to minerefer to minerefer to minerefer to mine.

Thanks to WP-CLI, we already have it set up in our plugin, courtesy of the
.travis.yml.travis.yml file.

I would like to mention that I adhere not to WordPress coding standardsWordPress coding standardsWordPress coding standardsWordPress coding standardsWordPress coding standardsWordPress coding standardsWordPress coding standards, but rather
to PHP Standards RecommendationsPHP Standards RecommendationsPHP Standards RecommendationsPHP Standards RecommendationsPHP Standards RecommendationsPHP Standards RecommendationsPHP Standards Recommendations, and my plugins require at least PHP 5.4. In
order for my builds not to failbuilds not to failbuilds not to failbuilds not to failbuilds not to failbuilds not to failbuilds not to fail, I had to replace their matrix with the following in
.travis.yml.travis.yml file.

Continuous Automated Testing With Travis CI

https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/c11f167f-3111-4452-b8ae-ca751b115d24/2-phpunit-command-output-large-opt.png
https://travis-ci.org/
https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://github.com/collizo4sky/wp-meta-verify
https://make.wordpress.org/core/handbook/best-practices/coding-standards/php/
http://www.php-fig.org/psr/
https://travis-ci.org/collizo4sky/wp-meta-verify/builds/264324465
https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/c11f167f-3111-4452-b8ae-ca751b115d24/2-phpunit-command-output-large-opt.png

Head over to Travis CITravis CITravis CITravis CITravis CITravis CITravis CI and sign in with your GitHub account. Follow the on-screen
guide to add your GitHub repository.

After account synchronization with GitHub, scroll to your plugin’s repository and
activate.

Setting up Travis CI repository (Large previewLarge previewLarge previewLarge previewLarge previewLarge previewLarge preview)

The next time you make a code change and push to GitHub, a build will be triggered
on Travis CI.

matrix:

 include:

 - php: 7.1

 env: WP_VERSION=latest

 - php: 7.0

 env: WP_VERSION=latest

 - php: 5.6

 env: WP_VERSION=latest

 - php: 5.6

 env: WP_VERSION=trunk

 - php: 5.5

 env: WP_VERSION=latest

 - php: 5.4

 env: WP_VERSION=latest

https://travis-ci.org/
https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/9efa469e-8432-4e99-a234-522de79b6ca3/3-phpunit-activate-plugin-repository-large-opt.png
https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/9efa469e-8432-4e99-a234-522de79b6ca3/3-phpunit-activate-plugin-repository-large-opt.png
https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/5497aa2b-b4f4-47f1-9ee6-8add99c364d2/4-phpunit-build-travisci-large-opt.png

Travis CI build result (Large previewLarge previewLarge previewLarge previewLarge previewLarge previewLarge preview)

I’ve made available a successful build resultsuccessful build resultsuccessful build resultsuccessful build resultsuccessful build resultsuccessful build resultsuccessful build result for your viewing pleasure.

It's no secret that a lot of developers, not just WordPress ones, do not write tests for
their projects because they don't know about them. Even some of the experienced
and advanced among us don't apparently because they consider it a waste of time.

Granted, setting up automated testing can be boring and time-consuming.
Nevertheless, it's an investment that will ensure that few or no bugs creep into your
software, thereby saving you the time and resources (including financial) that bugs
in your software would have cost you.

Wrapping Up

https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/5497aa2b-b4f4-47f1-9ee6-8add99c364d2/4-phpunit-build-travisci-large-opt.png
https://travis-ci.org/collizo4sky/wp-meta-verify/builds/264329247
https://cloud.netlifyusercontent.com/assets/344dbf88-fdf9-42bb-adb4-46f01eedd629/5497aa2b-b4f4-47f1-9ee6-8add99c364d2/4-phpunit-build-travisci-large-opt.png

Always write a test before implementing a feature, so that you don't forget or feel
lazy to do it after the feature has been implemented.

I hope you now recognize the importance of writing tests and how to start writing
one for your own WordPress plugin.

If you have any questions or comments, please let me know in the comments
section.

 (mc, ra, al, il)

Our friends and supporters. You know, they help us pay the bills ↓

mVach0n wrote � DECEMBER ��� ���� �����

Great article! But why Travis? There are many better solutions in the market.
Buddy.Works CircleCi Codeship

Reply ↓

H O T J A R

See how your visitors are really using your
website.

TRY IT FOR FREE

S L A C K

Bring your team together with Slack, the
collaboration hub for work.

LE ARN MORE

— Comments
6

https://smashing-delivery.herokuapp.com/ball?uri=//srv.buysellads.com/ads/click/x/GTND42QMCESDLKJUCAB4YKQMCWBD523YC6YD4Z3JCWBIV2QLC67DKK3KC6BIP23NF6SDTK3EHJNCLSIZ
https://smashing-delivery.herokuapp.com/ball?uri=//srv.buysellads.com/ads/click/x/GTND42QMCESDLKJUCAB4YKQMCWBD523YCKBD5Z3JCWBIV2QLC6SIVKQKC6BIP23NF6SDTK3EHJNCLSIZ

Sami CHANGUEL wrote � DECEMBER ��� ���� ����

Hi, Nice post You have a type in your plugin code :

$bing_code = get_option('wpmv_google_code')

The parameter should be wpmv-bing-code

Reply ↓

Load all 6 comments ↓

Comments are moderated and will only be made live if they add to the discussion in a constructive
way. If you disagree with a point, be polite. This should be a conversation between professional
people with the aim that we all learn. If your comment is about a typo, problem with the website or
anything else, please use our contact form.

We use GitHub Flavored Markdown for comments. E.g., you can call out code or a command within a
sentence with single backticks (`command``command`). To format code into its own distinct block, please use
triple backticks (```code block``````code block```).

LEAVE A COMMENT

Your message

https://www.smashingmagazine.com/contact/

Accessibility Android

Animation Apps

CSS Design

Design Patterns Design Systems

E-Commerce Freebies

Graphics HTML

Illustrator Inspiration

iOS JavaScript

Mobile Pattern Libraries

Performance Photoshop

Plugins React

Responsive Web Design Service Workers

Sketch Typography

UI U bili

BROWSE ALL SMASHING MAGAZINE TOPICS

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Your (real) name

Your Twitter (e.g. 'smashingmag')

Post CommentPost Comment

https://www.smashingmagazine.com/category/accessibility
https://www.smashingmagazine.com/category/android
https://www.smashingmagazine.com/category/animation
https://www.smashingmagazine.com/category/apps
https://www.smashingmagazine.com/category/css
https://www.smashingmagazine.com/category/design
https://www.smashingmagazine.com/category/design-patterns
https://www.smashingmagazine.com/category/design-systems
https://www.smashingmagazine.com/category/e-commerce
https://www.smashingmagazine.com/category/freebies
https://www.smashingmagazine.com/category/graphics
https://www.smashingmagazine.com/category/html
https://www.smashingmagazine.com/category/illustrator
https://www.smashingmagazine.com/category/inspiration
https://www.smashingmagazine.com/category/ios
https://www.smashingmagazine.com/category/javascript
https://www.smashingmagazine.com/category/mobile
https://www.smashingmagazine.com/category/pattern-libraries
https://www.smashingmagazine.com/category/performance
https://www.smashingmagazine.com/category/photoshop
https://www.smashingmagazine.com/category/plugins
https://www.smashingmagazine.com/category/react
https://www.smashingmagazine.com/category/responsive-web-design
https://www.smashingmagazine.com/category/service-workers
https://www.smashingmagazine.com/category/sketch
https://www.smashingmagazine.com/category/typography
https://www.smashingmagazine.com/category/ui
https://www.smashingmagazine.com/category/usability

UI Usability

User Experience Wallpapers

Web Design WordPress

Workflow

With a commitment to quality content for the design community.
Founded by Vitaly Friedman and Sven Lennartz. 2006–2019.

Smashing is proudly running on NetlifyNetlifyNetlifyNetlifyNetlifyNetlifyNetlify.
Fonts by LatinotypeLatinotypeLatinotypeLatinotypeLatinotypeLatinotypeLatinotype.

✎ Write for usWrite for usWrite for usWrite for usWrite for usWrite for usWrite for us Contact usContact usContact usContact usContact usContact usContact us About us (Impressum)About us (Impressum)About us (Impressum)About us (Impressum)About us (Impressum)About us (Impressum)About us (Impressum) Privacy policyPrivacy policyPrivacy policyPrivacy policyPrivacy policyPrivacy policyPrivacy policy

Membership loginMembership loginMembership loginMembership loginMembership loginMembership loginMembership login AdvertiseAdvertiseAdvertiseAdvertiseAdvertiseAdvertiseAdvertise

• •

• •

• •

•

https://www.smashingmagazine.com/category/ui
https://www.smashingmagazine.com/category/usability
https://www.smashingmagazine.com/category/user-experience
https://www.smashingmagazine.com/category/wallpapers
https://www.smashingmagazine.com/category/web-design
https://www.smashingmagazine.com/category/wordpress
https://www.smashingmagazine.com/category/workflow
https://www.netlify.com/?utm_source=link&utm_medium=parter&utm_campaign=sm-footer
http://latinotype.com/
https://www.smashingmagazine.com/write-for-us/
https://www.smashingmagazine.com/contact/
https://www.smashingmagazine.com/about/
https://www.smashingmagazine.com/privacy-policy
https://www.smashingmagazine.com/auth/
mailto:markus.seyfferth@smashingmagazine.com?subject=Let%E2%80%99s%20talk%20about%20advertising

